Use of Deep‐Learning Assisted Assessment of Cardiac Parameters in Zebrafish to Discover Cyanidin Chloride as a Novel Keap1 Inhibitor Against Doxorubicin‐Induced Cardiotoxicity

心脏毒性 KEAP1型 斑马鱼 阿霉素 药理学 化学 程序性细胞死亡 体内 癌症研究 细胞生物学 细胞凋亡 生物化学 生物 医学 毒性 内科学 生物技术 基因 转录因子 化疗
作者
Changtong Liu,Yingchao Wang,Yi‐Xin Zeng,Zirong Kang,Hong Zhao,Kun Qi,Hongzhi Wu,Lu Zhao,Yì Wáng
出处
期刊:Advanced Science [Wiley]
卷期号:10 (30) 被引量:12
标识
DOI:10.1002/advs.202301136
摘要

Doxorubicin-induced cardiomyopathy (DIC) brings tough clinical challenges as well as continued demand in developing agents for adjuvant cardioprotective therapies. Here, a zebrafish phenotypic screening with deep-learning assisted multiplex cardiac functional analysis using motion videos of larval hearts is established. Through training the model on a dataset of 2125 labeled ventricular images, ZVSegNet and HRNet exhibit superior performance over previous methods. As a result of high-content phenotypic screening, cyanidin chloride (CyCl) is identified as a potent suppressor of DIC. CyCl effectively rescues cardiac cell death and improves heart function in both in vitro and in vivo models of Doxorubicin (Dox) exposure. CyCl shows strong inhibitory effects on lipid peroxidation and mitochondrial damage and prevents ferroptosis and apoptosis-related cell death. Molecular docking and thermal shift assay further suggest a direct binding between CyCl and Keap1, which may compete for the Keap1-Nrf2 interaction, promote nuclear accumulation of Nrf2, and subsequentially transactivate Gpx4 and other antioxidant factors. Site-specific mutation of R415A in Keap1 significantly attenuates the protective effects of CyCl against Dox-induced cardiotoxicity. Taken together, the capability of deep-learning-assisted phenotypic screening in identifying promising lead compounds against DIC is exhibited, and new perspectives into drug discovery in the era of artificial intelligence are provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LL完成签到,获得积分10
1秒前
2秒前
JohanXu完成签到,获得积分10
2秒前
Fischl完成签到 ,获得积分10
3秒前
YY完成签到,获得积分20
4秒前
栗子发布了新的文献求助10
4秒前
ICE完成签到 ,获得积分10
6秒前
6秒前
daipeng发布了新的文献求助10
7秒前
7秒前
7秒前
悲伤西米露给41的求助进行了留言
7秒前
TF关注了科研通微信公众号
8秒前
9秒前
Akim应助尊敬的惠采纳,获得10
9秒前
大模型应助BMH采纳,获得10
9秒前
跳跃的白云完成签到 ,获得积分10
10秒前
10秒前
思源应助YuLu采纳,获得10
11秒前
樊念烟完成签到,获得积分10
12秒前
踏实雪一发布了新的文献求助10
12秒前
yangyang发布了新的文献求助10
12秒前
SDXLW应助swordlee采纳,获得10
13秒前
Narcissus153发布了新的文献求助20
13秒前
淡然大白菜完成签到 ,获得积分10
14秒前
14秒前
kuang完成签到,获得积分10
15秒前
夜畅雨归完成签到 ,获得积分10
15秒前
15秒前
貔貅发布了新的文献求助10
16秒前
Elaine完成签到 ,获得积分10
16秒前
Neon完成签到,获得积分10
17秒前
不安的元霜完成签到,获得积分10
17秒前
18秒前
18秒前
19秒前
20秒前
20秒前
cc完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3551983
求助须知:如何正确求助?哪些是违规求助? 3128409
关于积分的说明 9377696
捐赠科研通 2827437
什么是DOI,文献DOI怎么找? 1554378
邀请新用户注册赠送积分活动 725463
科研通“疑难数据库(出版商)”最低求助积分说明 714884