Screening and optimization of interpolation methods for mapping soil-borne polychlorinated biphenyls

克里金 反距离权重法 插值(计算机图形学) 均方误差 多元插值 变异函数 统计 数学 环境科学 计算机科学 双线性插值 人工智能 运动(物理)
作者
Ao Liu,Chengkai Qu,Jiaquan Zhang,Weize Sun,Changhe Shi,Annamaria Lima,Benedetto De Vivo,Huanfang Huang,Maurizio Palmisano,Annalise Guarino,Shihua Qi,Stefano Albanese
出处
期刊:Science of The Total Environment [Elsevier BV]
卷期号:913: 169498-169498
标识
DOI:10.1016/j.scitotenv.2023.169498
摘要

There is yet no scientific consensus, and for now, on how to choose the optimal interpolation method and its parameters for mapping soil-borne organic pollutants. Take the polychlorinated biphenyls (PCBs) for instance, we present the comparison of some classic interpolation methods using a high-resolution soil monitoring database. The results showed that empirical Bayesian kriging (EBK) has the highest accuracy for predicting the total PCB concentration, while root mean squared error (RMSE) in inverse distance weighting (IDW) is among the highest in these interpolation methods. The logarithmic transformation of non-normally distributed data contributed to enhance considerably the semivariogram for modeling in kriging interpolation. The increasing of search neighborhood reduced IDW's RMSE, but slightly affected in ordinary kriging (OK), while both of them resulted in over smooth of prediction map. The existence of outliers made the difference between two points increase sharply, and thereby weakening spatial autocorrelation and decreasing the accuracy. As predicted error increased continuously, the prediction accuracy of different interpolation methods reached unanimity gradually. The attempt of the assisted interpolation algorithm did not significantly improve the prediction accuracy of the IDW method. This study constructed a standardized workflow for interpolation, which could reduce human error to reach higher interpolation accuracy for mapping soil-borne PCBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助nav采纳,获得10
1秒前
cheer完成签到,获得积分10
1秒前
呼延炳完成签到,获得积分10
1秒前
宿醉完成签到,获得积分10
1秒前
江江江11完成签到,获得积分10
2秒前
乐乐应助GCS12采纳,获得10
2秒前
Mingyue123发布了新的文献求助10
2秒前
missinglotta发布了新的文献求助10
3秒前
Ternura发布了新的文献求助10
4秒前
JamesPei应助choshuenco采纳,获得10
4秒前
Z777发布了新的文献求助10
4秒前
li8888lili8888完成签到 ,获得积分10
4秒前
完美世界应助不羁之魂采纳,获得10
6秒前
共享精神应助彳亍采纳,获得10
7秒前
钟神蜀锦完成签到,获得积分10
7秒前
科研通AI2S应助kawayifenm采纳,获得10
7秒前
hygge完成签到,获得积分10
7秒前
TAboo发布了新的文献求助50
9秒前
10秒前
其名为醌发布了新的文献求助10
10秒前
Gary发布了新的文献求助10
10秒前
害羞的鸡翅完成签到,获得积分10
10秒前
Huahuahua发布了新的文献求助10
13秒前
15秒前
月亮与六便士完成签到,获得积分10
15秒前
16秒前
16秒前
19秒前
闪闪盼晴完成签到,获得积分10
20秒前
不羁之魂发布了新的文献求助10
21秒前
852应助Z777采纳,获得10
21秒前
LL完成签到 ,获得积分10
22秒前
24秒前
24秒前
llzzyyour发布了新的文献求助10
25秒前
哼哼哈嘿发布了新的文献求助10
25秒前
28秒前
FashionBoy应助此时此刻采纳,获得10
28秒前
劲秉应助无情芝麻采纳,获得10
28秒前
丽江阿镇完成签到,获得积分10
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Machine Learning Methods in Geoscience 1000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 888
Massenspiele, Massenbewegungen. NS-Thingspiel, Arbeiterweibespiel und olympisches Zeremoniell 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3727927
求助须知:如何正确求助?哪些是违规求助? 3272991
关于积分的说明 9979382
捐赠科研通 2988370
什么是DOI,文献DOI怎么找? 1639597
邀请新用户注册赠送积分活动 778803
科研通“疑难数据库(出版商)”最低求助积分说明 747817