材料科学
电化学
阴极
电解质
电导率
涂层
氢氟酸
锂(药物)
化学工程
离子
电极
纳米技术
化学
冶金
物理化学
有机化学
内分泌学
工程类
医学
作者
Congli Li,Xiang Yu,Chen‐Tuo Liao,Zhe Cui,Jinqi Zhu,Mengluan Gao,Wenqing Wang,Fenghua Weng,Rujia Zou,Qian Liu
出处
期刊:ChemNanoMat
[Wiley]
日期:2023-12-26
卷期号:10 (4)
被引量:1
标识
DOI:10.1002/cnma.202300558
摘要
Abstract As an indispensable cathode material for lithium‐ion batteries, LiMn x Fe 1− x PO 4 (LMFP) has garnered significant attention among scholars due to its considerable energy density and remarkable safety characteristics. However, the further advancement of LMFP is hindered by its poor conductivity and limitations in terms of cycle stability. Herein, LiMn 0.6 Fe 0.4 PO 4 @C@Al 2 O 3 (LMFP64/CA) composite materials with core‐shell structure were prepared through simple solvothermal and liquid phase coating methods. The carbon layer can further bolster the structural robustness of the active material, increase conductivity, and facilitate ion and electron transfer; while the Al 2 O 3 layer can function as a protective interface, effectively mitigating the detrimental electrochemical side effects arising from hydrofluoric acid (HF) generated during electrolyte decomposition within a wide voltage range. Consequently, the LMFP64/CA electrode exhibits impressive electrochemical performance including notable reversible capacity (125.1 mAh g −1 at 0.5 C), exceptional rate performance (111.2 mAh g −1 at 1 C), and remarkable cycle stability at 5 C (0.021 % decay rate over 500 cycles).
科研通智能强力驱动
Strongly Powered by AbleSci AI