PBFL: A Privacy-Preserving Blockchain-Based Federated Learning Framework With Homomorphic Encryption and Single Masking

计算机科学 同态加密 块链 服务器 加密 信息隐私 遮罩(插图) 计算机安全 数据聚合器 秘密分享 保密 密码学 计算机网络 艺术 无线传感器网络 视觉艺术
作者
Baofu Han,Bing Li,Raja Jurdak,Peiyun Zhang,Hao Zhang,Pan Feng,Chau Yuen
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:5
标识
DOI:10.1109/jiot.2024.3524632
摘要

Federated Learning (FL) has emerged as a promising paradigm for secure data sharing in Industrial Internet of Things (IIoT), enabling collaborative model training without direct exchange of raw data. However, recent studies have shown that FL still suffers from privacy vulnerabilities, where adversaries can reconstruct sensitive information by analyzing shared model parameters. Although several privacy-preserving FL (PPFL) schemes have been proposed to address these challenges, they primarily focus on protecting local model privacy, with limited attention to protecting global model confidentiality during aggregation. Additionally, their reliance on centralized aggregation servers introduces risks of single points of failure. To address these challenges, we propose a novel privacy-preserving blockchain-based FL framework (PBFL) that integrates blockchain, homomorphic encryption (HE), and a single masking. Specifically, PBFL employs HE to enable secure model training within the ciphertext domain, ensuring global model confidentiality. The single masking technique allows clients to apply unique random masks to their encrypted local model updates, enabling secure aggregation while preserving local privacy. Additionally, PBFL leverages blockchain for decentralized aggregation and encrypted model storage, effectively mitigating the risks associated with centralized servers. Experimental results demonstrate that PBFL achieves comparable model accuracy to state-of-the-art solutions while providing enhanced privacy protection. Furthermore, even with a client dropout rate of up to 30%, PBFL outperforms other blockchain-based PPFL methods in terms of computational and communication efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助疗伤烧肉粽采纳,获得10
刚刚
yyyy发布了新的文献求助10
刚刚
du发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
3秒前
3秒前
一叶知秋应助11采纳,获得10
3秒前
猫丞发布了新的文献求助10
4秒前
kakashi完成签到 ,获得积分10
4秒前
共享精神应助黎明的曙光采纳,获得10
4秒前
4秒前
6秒前
研友_VZG7GZ应助QIAN采纳,获得10
6秒前
幸运星完成签到 ,获得积分10
6秒前
科研通AI6应助Mr鹿采纳,获得10
6秒前
guyxlous完成签到,获得积分10
7秒前
9秒前
大胆曲奇发布了新的文献求助10
9秒前
9秒前
工科小白完成签到,获得积分10
10秒前
haru发布了新的文献求助10
10秒前
生动半青完成签到 ,获得积分10
10秒前
平安喜乐发布了新的文献求助10
10秒前
10秒前
10秒前
cjw发布了新的文献求助20
10秒前
负蕲发布了新的文献求助10
10秒前
xx发布了新的文献求助10
11秒前
吴文章完成签到 ,获得积分10
12秒前
今后应助自由的小鸟采纳,获得10
12秒前
12秒前
klzhuo发布了新的文献求助10
14秒前
笠昂发布了新的文献求助10
14秒前
李健的小迷弟应助xzj7789210采纳,获得10
14秒前
croiss发布了新的文献求助10
14秒前
梦里花落声应助迅速的颜采纳,获得10
14秒前
hanyue发布了新的文献求助10
14秒前
科研通AI6应助yy采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Integrating supply and demand-side management in renewable-based energy systems 500
A Treatise on the Mathematical Theory of Elasticity 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5251098
求助须知:如何正确求助?哪些是违规求助? 4415232
关于积分的说明 13745342
捐赠科研通 4286905
什么是DOI,文献DOI怎么找? 2352133
邀请新用户注册赠送积分活动 1349017
关于科研通互助平台的介绍 1308502