PBFL: A Privacy-Preserving Blockchain-Based Federated Learning Framework With Homomorphic Encryption and Single Masking

计算机科学 同态加密 块链 服务器 加密 信息隐私 遮罩(插图) 计算机安全 数据聚合器 秘密分享 保密 密码学 计算机网络 艺术 无线传感器网络 视觉艺术
作者
Baofu Han,Bing Li,Raja Jurdak,Peiyun Zhang,Hao Zhang,Pan Feng,Chau Yuen
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/jiot.2024.3524632
摘要

Federated Learning (FL) has emerged as a promising paradigm for secure data sharing in Industrial Internet of Things (IIoT), enabling collaborative model training without direct exchange of raw data. However, recent studies have shown that FL still suffers from privacy vulnerabilities, where adversaries can reconstruct sensitive information by analyzing shared model parameters. Although several privacy-preserving FL (PPFL) schemes have been proposed to address these challenges, they primarily focus on protecting local model privacy, with limited attention to protecting global model confidentiality during aggregation. Additionally, their reliance on centralized aggregation servers introduces risks of single points of failure. To address these challenges, we propose a novel privacy-preserving blockchain-based FL framework (PBFL) that integrates blockchain, homomorphic encryption (HE), and a single masking. Specifically, PBFL employs HE to enable secure model training within the ciphertext domain, ensuring global model confidentiality. The single masking technique allows clients to apply unique random masks to their encrypted local model updates, enabling secure aggregation while preserving local privacy. Additionally, PBFL leverages blockchain for decentralized aggregation and encrypted model storage, effectively mitigating the risks associated with centralized servers. Experimental results demonstrate that PBFL achieves comparable model accuracy to state-of-the-art solutions while providing enhanced privacy protection. Furthermore, even with a client dropout rate of up to 30%, PBFL outperforms other blockchain-based PPFL methods in terms of computational and communication efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
功夫熊猫完成签到,获得积分20
2秒前
大力初珍发布了新的文献求助10
3秒前
3秒前
1111chen发布了新的文献求助10
4秒前
4秒前
傲慢葫芦发布了新的文献求助10
4秒前
Jackson发布了新的文献求助10
5秒前
希望天下0贩的0应助Bob_Y采纳,获得10
5秒前
5秒前
nhhdhhn发布了新的文献求助10
5秒前
7秒前
yuebaoji发布了新的文献求助10
7秒前
7秒前
功夫熊猫发布了新的文献求助10
8秒前
顾矜应助佳佳采纳,获得10
8秒前
傲慢葫芦完成签到,获得积分20
9秒前
大壮发布了新的文献求助10
9秒前
泛泛之交发布了新的文献求助10
9秒前
10秒前
维尼完成签到,获得积分10
11秒前
友好的冥王星完成签到,获得积分10
11秒前
想躺平的咸鱼人完成签到,获得积分10
12秒前
十三发布了新的文献求助10
12秒前
cxxxx完成签到,获得积分10
13秒前
13秒前
热情凌青完成签到,获得积分10
13秒前
14秒前
su完成签到 ,获得积分10
14秒前
晨曦发布了新的文献求助10
16秒前
情怀应助简单小蕊采纳,获得10
17秒前
小小毅1989完成签到 ,获得积分10
17秒前
Kombate发布了新的文献求助10
17秒前
搜集达人应助大壮采纳,获得10
18秒前
FashionBoy应助傲慢葫芦采纳,获得10
18秒前
羊觅夏发布了新的文献求助20
20秒前
行稳致远完成签到,获得积分10
20秒前
21秒前
TXZ06给TXZ06的求助进行了留言
21秒前
科研通AI2S应助温暖天与采纳,获得10
22秒前
汉堡包应助牛牛采纳,获得10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304724
求助须知:如何正确求助?哪些是违规求助? 2938716
关于积分的说明 8489688
捐赠科研通 2613208
什么是DOI,文献DOI怎么找? 1427182
科研通“疑难数据库(出版商)”最低求助积分说明 662907
邀请新用户注册赠送积分活动 647547