PBFL: A Privacy-Preserving Blockchain-Based Federated Learning Framework With Homomorphic Encryption and Single Masking

计算机科学 同态加密 块链 服务器 加密 信息隐私 遮罩(插图) 计算机安全 数据聚合器 秘密分享 保密 密码学 计算机网络 艺术 无线传感器网络 视觉艺术
作者
Baofu Han,Bing Li,Raja Jurdak,Peiyun Zhang,Hao Zhang,Pan Feng,Chau Yuen
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/jiot.2024.3524632
摘要

Federated Learning (FL) has emerged as a promising paradigm for secure data sharing in Industrial Internet of Things (IIoT), enabling collaborative model training without direct exchange of raw data. However, recent studies have shown that FL still suffers from privacy vulnerabilities, where adversaries can reconstruct sensitive information by analyzing shared model parameters. Although several privacy-preserving FL (PPFL) schemes have been proposed to address these challenges, they primarily focus on protecting local model privacy, with limited attention to protecting global model confidentiality during aggregation. Additionally, their reliance on centralized aggregation servers introduces risks of single points of failure. To address these challenges, we propose a novel privacy-preserving blockchain-based FL framework (PBFL) that integrates blockchain, homomorphic encryption (HE), and a single masking. Specifically, PBFL employs HE to enable secure model training within the ciphertext domain, ensuring global model confidentiality. The single masking technique allows clients to apply unique random masks to their encrypted local model updates, enabling secure aggregation while preserving local privacy. Additionally, PBFL leverages blockchain for decentralized aggregation and encrypted model storage, effectively mitigating the risks associated with centralized servers. Experimental results demonstrate that PBFL achieves comparable model accuracy to state-of-the-art solutions while providing enhanced privacy protection. Furthermore, even with a client dropout rate of up to 30%, PBFL outperforms other blockchain-based PPFL methods in terms of computational and communication efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linmo发布了新的文献求助10
刚刚
Lucas应助感性的安露采纳,获得10
1秒前
bkagyin应助子车雁开采纳,获得10
2秒前
niko完成签到,获得积分10
2秒前
2秒前
狂野芷蕾发布了新的文献求助10
2秒前
2秒前
茶茶发布了新的文献求助10
3秒前
YuxiaoDang应助睡神采纳,获得10
3秒前
3秒前
lingyu完成签到,获得积分10
3秒前
4秒前
4秒前
嗯哼发布了新的文献求助10
5秒前
赘婿应助IN采纳,获得10
6秒前
乐乐乐发布了新的文献求助10
6秒前
Joao79完成签到,获得积分10
6秒前
fanghaoxiang完成签到,获得积分20
6秒前
7秒前
8秒前
8秒前
8秒前
小林完成签到,获得积分10
8秒前
金启维发布了新的文献求助10
9秒前
10秒前
kryptonite完成签到 ,获得积分10
10秒前
10秒前
机智紫寒发布了新的文献求助10
10秒前
小林发布了新的文献求助10
11秒前
11秒前
11秒前
KingYugene完成签到,获得积分10
11秒前
果果发布了新的文献求助10
11秒前
小二郎应助禾苗采纳,获得10
12秒前
12秒前
12秒前
12138的9527发布了新的文献求助10
12秒前
知许解夏应助淡淡菠萝采纳,获得10
12秒前
咕咚完成签到,获得积分10
12秒前
14秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961392
求助须知:如何正确求助?哪些是违规求助? 3507731
关于积分的说明 11137649
捐赠科研通 3240136
什么是DOI,文献DOI怎么找? 1790806
邀请新用户注册赠送积分活动 872520
科研通“疑难数据库(出版商)”最低求助积分说明 803271