Zeta电位
材料科学
纳米颗粒
粒径
结晶度
毒品携带者
药物输送
化学工程
纳米技术
纳米医学
脂质体
复合材料
工程类
作者
Bhavana Raj,Harika Sapa,Shona Sara Shaji,Kaladhar Kamalasanan
标识
DOI:10.1177/08853282241307908
摘要
In this work, we are comparing biomimetic niosomal nanoparticles (BNNs) with biomimetic liposomal nanoparticles (BLNs) and studying their drug carrier properties. A-BNNs and A-BLNs are prepared by lipid hydration method and characterized using DLS for size and zeta potential analysis, surface morphology by SEM, structural details by TEM, crystallinity and phase change by XRD, thermodynamic properties by DSC, TGA and DTGA, drug carrier properties by entrapment efficiency, drug release studies by open-end tube method and its mechanistic assessment by fitting with various models such as zero order, first order, Higuchi and Korsmeyer-Peppas models. The A-BNNs had an average size of 157.0 ± 3.58 nm and A-BLNs had an average size of 173 ± 1.24 nm. The A-BNNs had an average zeta potential of -29.0 ± 1.11 mV and A-BLNs had an average zeta potential of -46.5 ± 1.11 mV. The A-BNNs have an average entrapment efficiency of 94 ± 0.4% and A-BLNs have an average entrapment efficiency of 98 ± 0.14%. The BNNs have an average drug release of 78.12 ± 1.57% and A-BLNs have an average release of 98.41 ± 1.87% over 24 hours. Our results show that the vesicular size dependence influences the resulting nanoparticle drug carrier properties. This is a robust demonstration of the phenomena at the nanoscale that the precursor vesicular system size dependency will be reflected in bulk-engineered nanoparticle properties. These novel nanoparticles are potential candidates for development as an injection to suppress clots in stroke and myocardial infarction.
科研通智能强力驱动
Strongly Powered by AbleSci AI