Risk Prediction Models as an Emerging Trend for Managing Cancer‐Related Fatigue: A Systematic Review

医学
作者
Yun Zhang,Linna Li,Xia Li,Shu Zhang,Lin Zhou,Xiaoli Chen,Xiaolin Hu
出处
期刊:Journal of Advanced Nursing [Wiley]
标识
DOI:10.1111/jan.16680
摘要

ABSTRACT Aim To systematically identify, describe and evaluate the existing risk prediction models for cancer‐related fatigue. Design Systematic review. Data Sources Seven databases (EMBASE, Cochrane Database, MEDLINE, CINAHL, CNKI, SinoMed and Wanfang) were conducted from inception to August 14, 2023 and updated in September 15, 2024. Review Methods A systematic search was conducted to identify studies that reported the development of risk prediction models for cancer‐related fatigue. Two researchers independently performed a comprehensive assessment of the included studies. The Prediction Model Risk of Bias Assessment Tool was used to assess the risk of bias and applicability. Results Eighteen studies were included in this review. These models predicted cancer‐related fatigue in various cancers, including breast cancer, prostate cancer, gynaecological tumours and lung cancer. The most commonly included predictors were anxiety and depression, age, chemotherapy status, sleep quality and pain. Thirteen studies assessed the model performance by using the receiver operating characteristic curve. Although most models exhibited good predictive performance, a higher risk of bias was observed because of inappropriate handling of missing data methods and an imbalance in events per variable. Conclusion Prediction models show promise for cancer‐related fatigue management and precision care, but few are ready for clinical application due to methodological limitations. Implications for the Profession Future research should focus on improving the clinical utility of cancer‐related fatigue models while balancing predictive accuracy with cost‐effectiveness to promote equitable care. Impact This study critically systematically evaluated the prediction models of cancer‐related fatigue. The existing prediction models have a weak methodological foundation, with only a few having the potential to be implemented in clinical practice. Reporting Method The review is reported using the Preferred Reporting Items for Systematic Reviews and Meta‐Analyses (PRISMA) guidelines and the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis in Systematic Reviews and Meta‐Analyses checklist (TRIPOD‐SRMA). Public Contribution No patient or public contribution.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助徐丽采纳,获得10
刚刚
刚刚
xuxu发布了新的文献求助10
刚刚
二硫氰化钾完成签到,获得积分10
1秒前
雨秋玔发布了新的文献求助10
1秒前
伊麦香城发布了新的文献求助10
1秒前
111111111222发布了新的文献求助10
1秒前
2秒前
2秒前
LongH2完成签到,获得积分10
3秒前
科研小白完成签到,获得积分10
3秒前
sdkjxuwei完成签到,获得积分10
4秒前
5秒前
6秒前
6秒前
Chen272发布了新的文献求助10
6秒前
6秒前
奇遇完成签到,获得积分10
7秒前
guajiguaji发布了新的文献求助10
8秒前
8秒前
Anastasia完成签到,获得积分10
8秒前
9秒前
小心薛了你完成签到,获得积分10
10秒前
10秒前
10秒前
xuxu完成签到,获得积分10
10秒前
彭于晏应助小董不懂采纳,获得10
10秒前
徐biao发布了新的文献求助10
11秒前
DrNant发布了新的文献求助10
12秒前
呆萌从蓉完成签到 ,获得积分10
12秒前
12秒前
qqqq发布了新的文献求助20
12秒前
13秒前
安然发布了新的文献求助10
13秒前
13秒前
15秒前
hindbind完成签到,获得积分10
15秒前
jekin发布了新的文献求助10
16秒前
roger应助jilongwang采纳,获得10
16秒前
学术蝗虫发布了新的文献求助10
18秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222562
求助须知:如何正确求助?哪些是违规求助? 2871242
关于积分的说明 8174624
捐赠科研通 2538263
什么是DOI,文献DOI怎么找? 1370390
科研通“疑难数据库(出版商)”最低求助积分说明 645793
邀请新用户注册赠送积分活动 619580