On-line harmonic signal denoising from the measurement with non-stationary and non-Gaussian noise

降噪 高斯噪声 数学 信号(编程语言) 噪音(视频) 算法 直线(几何图形) 谐波 声学 人工智能 计算机科学 物理 图像(数学) 几何学 程序设计语言
作者
Liang Yu,Yanqi Chen,Yongli Zhang,Ran Wang,Zhaodong Zhang
出处
期刊:Signal Processing [Elsevier BV]
卷期号:201: 108723-108723 被引量:3
标识
DOI:10.1016/j.sigpro.2022.108723
摘要

• An online algorithm based on the Bayesian Maximum a Posteriori (MAP) is proposed. • The Gaussian Mixture Model (GMM) is adopted to fit the non-Gaussian noise. • The online Expectation Maximization (EM) algorithm is derived Harmonic denoising is one of the important preprocessing steps before extracting harmonic signal characteristics. Several signal processing techniques have been developed and applied for denoising the harmonics, which assume that the noise follows a Gaussian distribution and is stationary. However, the noise is often not so simple as a Gaussian distribution, and it could be non-Gaussian and non-stationary in most practical scenarios. A novel online denoising method for the harmonic signal with non-stationary complex noises based on the Bayesian Maximum a Posteriori (MAP) framework is proposed in this paper. The measured signal is divided equally into several frames. Then these frames are transformed into the time-frequency domain by the Short-Time Fourier transform (STFT) and are assumed to be the sum of a low-rank matrix and a noise matrix. The online model of the low-rank matrix and the noise matrix is then constructed between the frames. The online Gaussian mixture model (GMM) and low-rank matrix factorization are performed on the measurement matrix in the complex number domain to reconstruct the harmonic signal. The performance of the proposed method is validated in the simulations. The non-Gaussian and non-stationary noise can be removed more effectively, and the proposed algorithm can improve the frequency estimation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
从容的凛发布了新的文献求助10
1秒前
孙元完成签到,获得积分10
1秒前
桔子酱完成签到,获得积分10
1秒前
2秒前
3秒前
SGQT发布了新的文献求助10
4秒前
4秒前
4秒前
阳佟曼云完成签到,获得积分10
4秒前
4秒前
月岛滴滴发布了新的文献求助50
4秒前
5秒前
asipilin完成签到,获得积分10
5秒前
vickylow发布了新的文献求助10
6秒前
chicy发布了新的文献求助30
7秒前
科研通AI5应助QUN采纳,获得10
7秒前
OuO完成签到,获得积分10
7秒前
救命发布了新的文献求助10
7秒前
Jasper应助Mito2009采纳,获得10
8秒前
li完成签到,获得积分10
9秒前
9秒前
cxk关闭了cxk文献求助
10秒前
量子星尘发布了新的文献求助10
10秒前
慕青应助酷炫的书本采纳,获得10
10秒前
gogogogoossip发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
14秒前
14秒前
li发布了新的文献求助10
14秒前
Dinglin完成签到,获得积分10
14秒前
爆米花应助Lin采纳,获得10
16秒前
shisong发布了新的文献求助30
16秒前
tomorrow完成签到 ,获得积分10
17秒前
18秒前
xiaomaihua发布了新的文献求助10
18秒前
Jasper应助火星上香菇采纳,获得10
18秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5003803
求助须知:如何正确求助?哪些是违规求助? 4248286
关于积分的说明 13236206
捐赠科研通 4047371
什么是DOI,文献DOI怎么找? 2214293
邀请新用户注册赠送积分活动 1224391
关于科研通互助平台的介绍 1144721