On-line harmonic signal denoising from the measurement with non-stationary and non-Gaussian noise

降噪 高斯噪声 数学 信号(编程语言) 噪音(视频) 算法 直线(几何图形) 谐波 声学 人工智能 计算机科学 物理 图像(数学) 几何学 程序设计语言
作者
Liang Yu,Yanqi Chen,Yongli Zhang,Ran Wang,Zhaodong Zhang
出处
期刊:Signal Processing [Elsevier BV]
卷期号:201: 108723-108723 被引量:3
标识
DOI:10.1016/j.sigpro.2022.108723
摘要

• An online algorithm based on the Bayesian Maximum a Posteriori (MAP) is proposed. • The Gaussian Mixture Model (GMM) is adopted to fit the non-Gaussian noise. • The online Expectation Maximization (EM) algorithm is derived Harmonic denoising is one of the important preprocessing steps before extracting harmonic signal characteristics. Several signal processing techniques have been developed and applied for denoising the harmonics, which assume that the noise follows a Gaussian distribution and is stationary. However, the noise is often not so simple as a Gaussian distribution, and it could be non-Gaussian and non-stationary in most practical scenarios. A novel online denoising method for the harmonic signal with non-stationary complex noises based on the Bayesian Maximum a Posteriori (MAP) framework is proposed in this paper. The measured signal is divided equally into several frames. Then these frames are transformed into the time-frequency domain by the Short-Time Fourier transform (STFT) and are assumed to be the sum of a low-rank matrix and a noise matrix. The online model of the low-rank matrix and the noise matrix is then constructed between the frames. The online Gaussian mixture model (GMM) and low-rank matrix factorization are performed on the measurement matrix in the complex number domain to reconstruct the harmonic signal. The performance of the proposed method is validated in the simulations. The non-Gaussian and non-stationary noise can be removed more effectively, and the proposed algorithm can improve the frequency estimation accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
萱1988发布了新的文献求助10
1秒前
1秒前
xyf完成签到,获得积分10
1秒前
Engen发布了新的文献求助10
1秒前
Emilia完成签到,获得积分10
1秒前
2秒前
伶俐的书南完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
碳土不凡完成签到 ,获得积分10
2秒前
114555发布了新的文献求助10
3秒前
他方世界发布了新的文献求助10
3秒前
3秒前
啦啦啦完成签到,获得积分10
3秒前
迷路的晓旋完成签到,获得积分10
4秒前
禁止通行发布了新的文献求助10
4秒前
Ray完成签到,获得积分10
6秒前
fmd123完成签到,获得积分20
6秒前
我想吃薯条完成签到 ,获得积分10
6秒前
poppysss发布了新的文献求助10
7秒前
可爱的函函应助一把过采纳,获得10
7秒前
UPUP完成签到,获得积分10
8秒前
DDF完成签到 ,获得积分10
8秒前
9秒前
顾矜应助BenQiu采纳,获得10
9秒前
孙福禄应助牛奶秋刀鱼采纳,获得10
10秒前
@@@发布了新的文献求助10
10秒前
Eusha完成签到,获得积分10
11秒前
吴家辉完成签到,获得积分10
11秒前
zhanwenlin完成签到 ,获得积分10
11秒前
12秒前
12秒前
13秒前
13秒前
追寻的问玉完成签到 ,获得积分10
13秒前
博修完成签到,获得积分10
15秒前
上官若男应助冷酷严青采纳,获得10
15秒前
辉夜折影完成签到,获得积分10
16秒前
16秒前
16秒前
hayden发布了新的文献求助10
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582