On-line harmonic signal denoising from the measurement with non-stationary and non-Gaussian noise

降噪 高斯噪声 数学 信号(编程语言) 噪音(视频) 算法 直线(几何图形) 谐波 声学 人工智能 计算机科学 物理 图像(数学) 几何学 程序设计语言
作者
Liang Yu,Yanqi Chen,Yongli Zhang,Ran Wang,Zhaodong Zhang
出处
期刊:Signal Processing [Elsevier]
卷期号:201: 108723-108723 被引量:3
标识
DOI:10.1016/j.sigpro.2022.108723
摘要

• An online algorithm based on the Bayesian Maximum a Posteriori (MAP) is proposed. • The Gaussian Mixture Model (GMM) is adopted to fit the non-Gaussian noise. • The online Expectation Maximization (EM) algorithm is derived Harmonic denoising is one of the important preprocessing steps before extracting harmonic signal characteristics. Several signal processing techniques have been developed and applied for denoising the harmonics, which assume that the noise follows a Gaussian distribution and is stationary. However, the noise is often not so simple as a Gaussian distribution, and it could be non-Gaussian and non-stationary in most practical scenarios. A novel online denoising method for the harmonic signal with non-stationary complex noises based on the Bayesian Maximum a Posteriori (MAP) framework is proposed in this paper. The measured signal is divided equally into several frames. Then these frames are transformed into the time-frequency domain by the Short-Time Fourier transform (STFT) and are assumed to be the sum of a low-rank matrix and a noise matrix. The online model of the low-rank matrix and the noise matrix is then constructed between the frames. The online Gaussian mixture model (GMM) and low-rank matrix factorization are performed on the measurement matrix in the complex number domain to reconstruct the harmonic signal. The performance of the proposed method is validated in the simulations. The non-Gaussian and non-stationary noise can be removed more effectively, and the proposed algorithm can improve the frequency estimation accuracy.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
汉堡包应助水123采纳,获得10
1秒前
2秒前
cui发布了新的文献求助10
2秒前
4秒前
小刷子发布了新的文献求助10
4秒前
Hello应助西红柿鸡蛋面采纳,获得30
6秒前
sun发布了新的文献求助10
6秒前
海猫食堂发布了新的文献求助10
7秒前
好运连连发布了新的文献求助10
7秒前
7秒前
妥妥酱完成签到,获得积分10
8秒前
江河发布了新的文献求助10
8秒前
CipherSage应助LYZSh采纳,获得10
9秒前
11秒前
炙热依瑶完成签到,获得积分10
11秒前
GG完成签到,获得积分20
13秒前
13秒前
夜行发布了新的文献求助30
14秒前
江河完成签到,获得积分10
15秒前
16秒前
16秒前
薛定谔不喜欢猫完成签到,获得积分10
17秒前
刘亚玲完成签到 ,获得积分10
17秒前
科研通AI2S应助林洁佳采纳,获得10
18秒前
19秒前
小刷子完成签到,获得积分10
19秒前
水123发布了新的文献求助10
19秒前
20秒前
咕嘟完成签到,获得积分10
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
大模型应助慧子采纳,获得10
22秒前
23秒前
王然发布了新的文献求助10
24秒前
好运连连完成签到,获得积分10
24秒前
24秒前
赞赞发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Peptide Synthesis_Methods and Protocols 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5603729
求助须知:如何正确求助?哪些是违规求助? 4688711
关于积分的说明 14855620
捐赠科研通 4694855
什么是DOI,文献DOI怎么找? 2540965
邀请新用户注册赠送积分活动 1507131
关于科研通互助平台的介绍 1471814