Rapid detection of incomplete coal and gangue based on improved PSPNet

棱锥(几何) 人工智能 计算机科学 特征提取 特征(语言学) 模式识别(心理学) 分割 煤矸石 卷积(计算机科学) 块(置换群论) 计算机视觉 人工神经网络 数学 材料科学 哲学 语言学 冶金 几何学
作者
Xi Wang,Yongcun Guo,Shuang Wang,Gang Cheng,Xinquan Wang,Lei He
出处
期刊:Measurement [Elsevier BV]
卷期号:201: 111646-111646
标识
DOI:10.1016/j.measurement.2022.111646
摘要

• A fast recognition network of coals and gangues was proposed. • Feature fusion channels and an attention mechanism are embedded in this network. • A lightweight feature extraction module was built to improve recognition accuracy. • A three-layer pyramid module is built to extract multi-scale features of targets. • Our method can solve the problem of low recognition rate in a complex environment. Aiming at the rapid identification of coal and gangue under multi-scale, adhesion, and half-occlusion conditions, a semantic segmentation network of coal and gangue image (SSNet_CG) based on the pyramid scene parsing network(PSPNet) is proposed. Firstly, the backbone feature extraction network of PSPNet is optimized. For the one, the attention mechanism is embedded in the inverted residual block (IRB) to strengthen the detailed feature information of coal and gangue in image; for another, depthwise separable convolution (DSC) and atrous convolution (AC) are used to replace the typical convolution to reduce parameters. Subsequently, the number of feature levels in the original pyramid pooling module (PPM) are reduced to minimize parameters. Finally, two feature fusion channels are added to refine the coal and gangue segmentation boundary in the adhesive state. Compared with some classic recognition models, the results show that our method has the best effects, the MPA, mIoU and F1_scores are respectively 97.3, 95.4 and 0.98, and the single image test time is 0.027 s. This method can accurately identify multi-scale and partially blocked coals and gangues.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
故意的怜晴完成签到 ,获得积分10
刚刚
小叶子完成签到,获得积分10
1秒前
机智紫寒发布了新的文献求助10
1秒前
好难好难完成签到 ,获得积分20
1秒前
choo发布了新的文献求助30
2秒前
织安完成签到,获得积分10
3秒前
4秒前
科研通AI2S应助Key采纳,获得10
4秒前
小强x完成签到,获得积分10
4秒前
慕青应助struggling采纳,获得30
5秒前
Fnoopy完成签到,获得积分10
5秒前
lhnee应助冯小超的神经采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
Dank1ng完成签到,获得积分10
5秒前
7秒前
7秒前
坦率的匪发布了新的文献求助20
7秒前
cg完成签到,获得积分10
8秒前
yuan关注了科研通微信公众号
9秒前
9秒前
111完成签到 ,获得积分10
9秒前
10秒前
来来完成签到,获得积分10
10秒前
钱超完成签到,获得积分10
11秒前
11秒前
kyle发布了新的文献求助10
11秒前
温暖焱发布了新的文献求助10
12秒前
研究啥发布了新的文献求助10
12秒前
12秒前
choo完成签到,获得积分20
13秒前
atom发布了新的文献求助10
14秒前
滴答完成签到,获得积分10
14秒前
彭于晏应助初心采纳,获得10
14秒前
14秒前
果果发布了新的文献求助10
15秒前
15秒前
诚心的箴完成签到,获得积分10
16秒前
16秒前
orixero应助科研通管家采纳,获得100
16秒前
深情安青应助科研通管家采纳,获得10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186