复合数
材料科学
粘度
化学工程
热导率
聚乙二醇
复合材料
工程类
作者
Limei Dong,Yiming Li,Junfeng Li,Yihao Guan,Xiuping Chen,Dan Zhang,Zhining Wang
标识
DOI:10.1016/j.jhazmat.2023.131112
摘要
Low fluidity of high-viscosity oil usually hinders its emulsification. Facing this dilemma, we proposed a novel functional composite phase change material (PCM) with in situ heating feature coupled with emulsification capability. This composite PCM consisting of mesoporous carbon hollow spheres (MCHS) and polyethylene glycol (PEG) shows excellent photothermal conversion ability, thermal conductivity and Pickering emulsification. Compared with the currently reported composite PCMs, the unique hollow cavity structure of MCHS not only enables excellent encapsulation of PCM, but also protects the PCM from leaking and direct contact with oil phase. Importantly, the thermal conductivity of 80% [email protected] was determined to be 1.372 W/m·K, which was 2.887 times superior to that of pure PEG. MCHS endows the composite PCM with excellent light absorption capacity and photothermal conversion efficiency. The viscosity of high-viscosity oil can be facilely reduced in situ once it comes into contact with the heat-storing [email protected], thus the emulsification is greatly enhanced. In view of the in situ heating feature and emulsification capability of [email protected], this work puts forward a novel solution to address the problem of emulsification of high-viscosity oil through the integration of MCHS and PCM.
科研通智能强力驱动
Strongly Powered by AbleSci AI