Effect of Deep Learning Reconstruction on Evaluating Cervical Spinal Canal Stenosis With Computed Tomography

医学 狭窄 磁共振成像 放射科 迭代重建 椎管狭窄 置信区间 宫颈管 图像质量 椎管 核医学 脊髓 子宫颈 人工智能 内科学 腰椎 癌症 精神科 图像(数学) 计算机科学
作者
Yuta Ohtake,Koichiro Yasaka,Akiyoshi Hamada,Nana Fujita,Osamu Abe
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
卷期号:47 (6): 996-1001 被引量:5
标识
DOI:10.1097/rct.0000000000001490
摘要

Magnetic resonance imaging (MRI) is commonly used to evaluate cervical spinal canal stenosis; however, some patients are ineligible for MRI. We aimed to assess the effect of deep learning reconstruction (DLR) in evaluating cervical spinal canal stenosis using computed tomography (CT) compared with hybrid iterative reconstruction (hybrid IR).This retrospective study included 33 patients (16 male patients; mean age, 57.7 ± 18.4 years) who underwent cervical spine CT. Images were reconstructed using DLR and hybrid IR. In the quantitative analyses, noise was recorded by placing the regions of interest on the trapezius muscle. In the qualitative analyses, 2 radiologists evaluated the depiction of structures, image noise, overall image quality, and degree of cervical canal stenosis. We additionally evaluated the agreement between MRI and CT in 15 patients for whom preoperative cervical MRI was available.Image noise was less with DLR than hybrid IR in the quantitative ( P ≤ 0.0395) and subjective analyses ( P ≤ 0.0023), and the depiction of most structures was improved ( P ≤ 0.0052), which resulted in better overall quality ( P ≤ 0.0118). Interobserver agreement in the assessment of spinal canal stenosis with DLR (0.7390; 95% confidence interval [CI], 0.7189-0.7592) was superior to that with hybrid IR (0.7038; 96% CI, 0.6846-0.7229). As for the agreement between MRI and CT, significant improvement was observed for 1 reader with DLR (0.7910; 96% CI, 0.7762-0.8057) than hybrid IR (0.7536; 96% CI, 0.7383-0.7688).Deep learning reconstruction provided better quality cervical spine CT images in the evaluation of cervical spinal stenosis than hybrid IR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dr司发布了新的文献求助10
刚刚
1秒前
changping应助多情立辉采纳,获得10
1秒前
务实妖妖完成签到,获得积分10
2秒前
xiiin发布了新的文献求助10
3秒前
正好发布了新的文献求助10
5秒前
青春完成签到,获得积分10
6秒前
惠惠完成签到 ,获得积分10
6秒前
琪求好运发布了新的文献求助10
8秒前
热心梦山发布了新的文献求助10
9秒前
科研通AI2S应助文艺烧鹅采纳,获得10
10秒前
今后应助踏实的白羊采纳,获得100
10秒前
10秒前
小小完成签到,获得积分10
11秒前
zhouxw27完成签到,获得积分10
11秒前
醉熏的伊完成签到,获得积分10
14秒前
aaaabc完成签到 ,获得积分10
16秒前
16秒前
虚幻傲珊发布了新的文献求助10
16秒前
19秒前
changping应助畅快的觅风采纳,获得10
20秒前
20秒前
21秒前
Dr_J发布了新的文献求助10
24秒前
25秒前
赵小满发布了新的文献求助10
26秒前
26秒前
牛牛发布了新的文献求助10
27秒前
29秒前
30秒前
文艺烧鹅完成签到,获得积分20
31秒前
33秒前
chlc6973完成签到,获得积分10
33秒前
33秒前
34秒前
高高完成签到,获得积分10
34秒前
Cloud发布了新的文献求助10
35秒前
35秒前
yaooo完成签到 ,获得积分10
36秒前
何东霖发布了新的文献求助10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295803
求助须知:如何正确求助?哪些是违规求助? 4445172
关于积分的说明 13835666
捐赠科研通 4329791
什么是DOI,文献DOI怎么找? 2376755
邀请新用户注册赠送积分活动 1372067
关于科研通互助平台的介绍 1337408