Effect of Deep Learning Reconstruction on Evaluating Cervical Spinal Canal Stenosis With Computed Tomography

医学 狭窄 磁共振成像 放射科 迭代重建 椎管狭窄 置信区间 宫颈管 图像质量 椎管 核医学 脊髓 子宫颈 人工智能 内科学 腰椎 癌症 精神科 图像(数学) 计算机科学
作者
Yuta Ohtake,Koichiro Yasaka,Akiyoshi Hamada,Nana Fujita,Osamu Abe
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:47 (6): 996-1001 被引量:3
标识
DOI:10.1097/rct.0000000000001490
摘要

Magnetic resonance imaging (MRI) is commonly used to evaluate cervical spinal canal stenosis; however, some patients are ineligible for MRI. We aimed to assess the effect of deep learning reconstruction (DLR) in evaluating cervical spinal canal stenosis using computed tomography (CT) compared with hybrid iterative reconstruction (hybrid IR).This retrospective study included 33 patients (16 male patients; mean age, 57.7 ± 18.4 years) who underwent cervical spine CT. Images were reconstructed using DLR and hybrid IR. In the quantitative analyses, noise was recorded by placing the regions of interest on the trapezius muscle. In the qualitative analyses, 2 radiologists evaluated the depiction of structures, image noise, overall image quality, and degree of cervical canal stenosis. We additionally evaluated the agreement between MRI and CT in 15 patients for whom preoperative cervical MRI was available.Image noise was less with DLR than hybrid IR in the quantitative ( P ≤ 0.0395) and subjective analyses ( P ≤ 0.0023), and the depiction of most structures was improved ( P ≤ 0.0052), which resulted in better overall quality ( P ≤ 0.0118). Interobserver agreement in the assessment of spinal canal stenosis with DLR (0.7390; 95% confidence interval [CI], 0.7189-0.7592) was superior to that with hybrid IR (0.7038; 96% CI, 0.6846-0.7229). As for the agreement between MRI and CT, significant improvement was observed for 1 reader with DLR (0.7910; 96% CI, 0.7762-0.8057) than hybrid IR (0.7536; 96% CI, 0.7383-0.7688).Deep learning reconstruction provided better quality cervical spine CT images in the evaluation of cervical spinal stenosis than hybrid IR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小木虫完成签到,获得积分10
1秒前
Cyan完成签到,获得积分10
1秒前
kiki完成签到,获得积分10
3秒前
五五完成签到,获得积分10
3秒前
Akim应助就好采纳,获得10
4秒前
欣喜的迎梦完成签到,获得积分10
7秒前
大个应助ttqql采纳,获得10
8秒前
瑜瑜发布了新的文献求助70
9秒前
典雅巧凡完成签到 ,获得积分10
10秒前
Abby应助俊逸鸣凤采纳,获得10
13秒前
13秒前
heshuyao完成签到,获得积分10
14秒前
wh完成签到,获得积分10
14秒前
15秒前
何征结发布了新的文献求助10
19秒前
20秒前
20秒前
单薄惜文应助可研采纳,获得10
21秒前
passby完成签到,获得积分10
21秒前
烟花应助yuwshuihen采纳,获得10
22秒前
MMMV发布了新的文献求助50
23秒前
QXS发布了新的文献求助10
24秒前
24秒前
26秒前
26秒前
年轻可愁完成签到 ,获得积分10
26秒前
26秒前
卫化蛹完成签到,获得积分20
27秒前
淡定的问兰完成签到,获得积分10
28秒前
ylyla发布了新的文献求助10
28秒前
29秒前
30秒前
MJSZY发布了新的文献求助10
30秒前
30秒前
无奈醉柳完成签到,获得积分10
30秒前
wakkkkk发布了新的文献求助10
31秒前
33秒前
zhaogl完成签到,获得积分10
34秒前
34秒前
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3293713
求助须知:如何正确求助?哪些是违规求助? 2929700
关于积分的说明 8443132
捐赠科研通 2601804
什么是DOI,文献DOI怎么找? 1420141
科研通“疑难数据库(出版商)”最低求助积分说明 660503
邀请新用户注册赠送积分活动 643110