Effect of Deep Learning Reconstruction on Evaluating Cervical Spinal Canal Stenosis With Computed Tomography

医学 狭窄 磁共振成像 放射科 迭代重建 椎管狭窄 置信区间 宫颈管 图像质量 椎管 核医学 脊髓 子宫颈 人工智能 内科学 腰椎 癌症 精神科 图像(数学) 计算机科学
作者
Yuta Ohtake,Koichiro Yasaka,Akiyoshi Hamada,Nana Fujita,Osamu Abe
出处
期刊:Journal of Computer Assisted Tomography [Lippincott Williams & Wilkins]
卷期号:47 (6): 996-1001 被引量:4
标识
DOI:10.1097/rct.0000000000001490
摘要

Magnetic resonance imaging (MRI) is commonly used to evaluate cervical spinal canal stenosis; however, some patients are ineligible for MRI. We aimed to assess the effect of deep learning reconstruction (DLR) in evaluating cervical spinal canal stenosis using computed tomography (CT) compared with hybrid iterative reconstruction (hybrid IR).This retrospective study included 33 patients (16 male patients; mean age, 57.7 ± 18.4 years) who underwent cervical spine CT. Images were reconstructed using DLR and hybrid IR. In the quantitative analyses, noise was recorded by placing the regions of interest on the trapezius muscle. In the qualitative analyses, 2 radiologists evaluated the depiction of structures, image noise, overall image quality, and degree of cervical canal stenosis. We additionally evaluated the agreement between MRI and CT in 15 patients for whom preoperative cervical MRI was available.Image noise was less with DLR than hybrid IR in the quantitative ( P ≤ 0.0395) and subjective analyses ( P ≤ 0.0023), and the depiction of most structures was improved ( P ≤ 0.0052), which resulted in better overall quality ( P ≤ 0.0118). Interobserver agreement in the assessment of spinal canal stenosis with DLR (0.7390; 95% confidence interval [CI], 0.7189-0.7592) was superior to that with hybrid IR (0.7038; 96% CI, 0.6846-0.7229). As for the agreement between MRI and CT, significant improvement was observed for 1 reader with DLR (0.7910; 96% CI, 0.7762-0.8057) than hybrid IR (0.7536; 96% CI, 0.7383-0.7688).Deep learning reconstruction provided better quality cervical spine CT images in the evaluation of cervical spinal stenosis than hybrid IR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
菠萝罐头完成签到 ,获得积分10
1秒前
喜悦蚂蚁完成签到,获得积分10
4秒前
easton完成签到,获得积分10
5秒前
6秒前
11秒前
英姑应助曾经的刺猬采纳,获得10
13秒前
Aubrey发布了新的文献求助10
14秒前
领导范儿应助鲁滨逊采纳,获得10
14秒前
老张发布了新的文献求助10
14秒前
用户123完成签到,获得积分10
17秒前
pluto应助谦让的冷珍采纳,获得10
17秒前
九思完成签到,获得积分10
18秒前
19秒前
orixero应助轻松的万恶采纳,获得10
21秒前
21秒前
22秒前
23秒前
23秒前
boluohu发布了新的文献求助10
24秒前
25秒前
小白完成签到 ,获得积分10
26秒前
FashionBoy应助QIANGYI采纳,获得10
27秒前
岑甜甜发布了新的文献求助10
28秒前
刘一鸣发布了新的文献求助10
28秒前
wz发布了新的文献求助10
29秒前
29秒前
1eader1完成签到,获得积分10
30秒前
peekaboo完成签到,获得积分10
30秒前
July完成签到,获得积分10
31秒前
汉堡包应助是龙龙呀采纳,获得10
32秒前
32秒前
脑洞疼应助苏大肺雾采纳,获得10
32秒前
33秒前
33秒前
35秒前
35秒前
lllllll完成签到,获得积分10
36秒前
勾勾1991发布了新的文献求助10
37秒前
夜见枫发布了新的文献求助10
37秒前
38秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993