混溶性
分子间力
接受者
有机太阳能电池
材料科学
有机化学
化学
聚合物
分子
物理
复合材料
凝聚态物理
作者
Wonjun Kim,Jiyeon Oh,Jeewon Park,Zhe Sun,Jaeyeong Park,Thi Le Huyen,Seoyoung Kim,Changduk Yang
摘要
Although the molecular electronic forces (e.g., intra- and intermolecular interactions) within active layers largely govern the device performance of organic solar cells (OSCs), they are complicated and less understood. In this study, we have synthesized two low-cost isomeric non-fused acceptors (TT-Naph1 and TT-Naph2) with 1-naphthyl and 2-naphthyl aromatic chains, respectively and quantified the molecular interaction-photovoltaic performance relationship. Benefiting from the enhanced dipole moment, TT-Naph2 possesses a strong dipole–dipole intermolecular interaction, while the improved backbone planarity endows TT-Naph1 with a strengthened intramolecular charge-transfer effect, which can regulate the desired blend morphology with the D18 donor polymer as a result of its low miscibility with D18. Less miscible nanostructures are more pronounced in the layer-by-layer (LBL) systems than bulk heterojunction (BHJ) ones, increasing the power conversion efficiencies (PCEs) in the sequence of TT-Naph2 BHJ < TT-Naph1 BHJ < TT-Naph2 LBL < TT-Naph1 LBL. Notably, a ternary LBL OSC based on TT-Naph1 achieved remarkable PCE of 18.41%, one of the top values for LBL-type OSCs. Our findings provide insights into the controlling effect of intra- and intermolecular interactions on the active layers for efficient non-fused acceptor-based OSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI