亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Drug Design and Success of Prospective Mouse In Vitro–In Vivo Extrapolation (IVIVE) for Predictions of Plasma Clearance (CLp) from Hepatocyte Intrinsic Clearance (CLint)

体内 化学 肝细胞 代谢清除率 药品 体外 药代动力学 外推法 药理学 生物化学 医学 生物 数学 数学分析 生物技术
作者
Nenad Manevski,Kenichi Umehara,Neil Parrott
出处
期刊:Molecular Pharmaceutics [American Chemical Society]
卷期号:20 (7): 3438-3459 被引量:1
标识
DOI:10.1021/acs.molpharmaceut.2c01001
摘要

Hepatocyte intrinsic clearance (CLint) and methods of in vitro-in vivo extrapolation (IVIVE) are often used to predict plasma clearance (CLp) in drug discovery. While the prediction success of this approach is dependent on the chemotype, specific molecular properties and drug design features that govern these outcomes are poorly understood. To address this challenge, we investigated the success of prospective mouse CLp IVIVE across 2142 chemically diverse compounds. Dilution scaling, which assumes that the free fraction in hepatocyte incubations (fu,inc) is governed by binding to the 10% of serum in the incubation medium, was used as our default CLp IVIVE approach. Results show that predictions of CLp are better for smaller (molecular weight (MW) < 500 Da), less polar (total polar surface area (TPSA) < 100 Å2, hydrogen bond donor (HBD) ≤1, hydrogen bond acceptor (HBA) ≤ 6), lipophilic (log D > 3), and neutral compounds, with low HBD count playing the key role. If compounds are classified according to their chemical space, predictions were good for compounds resembling central nervous system (CNS) drugs [average absolute fold error (AAFE) of 2.05, average fold error (AFE) of 0.90], moderate for classical druglike compounds (according to Lipinski, Veber, and Ghose guidelines; AAFE of 2.55; AFE of 0.68), and poor for nonclassical "beyond the rule of 5" compounds (AAFE of 3.31; AFE of 0.41). From the perspective of measured druglike properties, predictions of CLp were better for compounds with moderate-to-high hepatocyte CLint (>10 μL/min/106 cells), high passive cellular permeability (Papp > 100 nm/s), and moderate observed CLp (5-50 mL/min/kg). Influences of plasma protein binding (fu,p) and P-glycoprotein (Pgp) apical efflux ratio (AP-ER) were less pronounced. If the extended clearance classification system (ECCS) is applied, predictions were good for class 2 (Papp > 50 nm/s; neutral or basic; AAFE of 2.35; AFE of 0.70) and acceptable for class 1A compounds (AAFE of 2.98; AFE of 0.70). Classes 1B, 3 A/B, and 4 showed poor outcomes (AAFE > 3.80; AFE < 0.60). Functional groups trending toward weaker CLp IVIVE were esters, carbamates, sulfonamides, carboxylic acids, ketones, primary and secondary amines, primary alcohols, oxetanes, and compounds liable to aldehyde oxidase metabolism, likely due to multifactorial reasons. Multivariate analysis showed that multiple properties are relevant, combining together to define the overall success of CLp IVIVE. Our results indicate that the current practice of prospective CLp IVIVE is suitable only for CNS-like compounds and well-behaved classical druglike space (e.g., high permeability or ECCS class 2) without challenging functional groups. Unfortunately, based on existing mouse data, prospective CLp IVIVE for complex and nonclassical chemotypes is poor and hardly better than random guessing. This is likely due to complexities such as extrahepatic metabolism and transporter-mediated disposition which are poorly captured by this methodology. With small-molecule drug discovery increasingly evolving toward nonclassical and complex chemotypes, existing CLp IVIVE methodology will require improvement. While empirical correction factors may bridge the gap in the near future, improved and new in vitro assays, data integration models, and machine learning (ML) methods are increasingly needed to address this challenge and reduce the number of nonclinical pharmacokinetic (PK) studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小白发布了新的文献求助10
4秒前
源源源完成签到 ,获得积分10
10秒前
长情黄蜂发布了新的文献求助10
13秒前
FashionBoy应助zf2023采纳,获得10
15秒前
15秒前
21秒前
Drxie发布了新的文献求助10
26秒前
英俊的铭应助AA采纳,获得10
27秒前
一夜很静应助蔡从安采纳,获得10
35秒前
一夜很静应助蔡从安采纳,获得10
35秒前
香蕉觅云应助yuebaoji采纳,获得10
35秒前
35秒前
赘婿应助刘泽千采纳,获得30
39秒前
AA发布了新的文献求助10
39秒前
gaw2008完成签到,获得积分10
40秒前
完美世界应助科研通管家采纳,获得10
43秒前
科研通AI5应助科研通管家采纳,获得10
43秒前
天天快乐应助科研通管家采纳,获得10
43秒前
45秒前
蔡从安完成签到,获得积分20
50秒前
yuebaoji发布了新的文献求助10
50秒前
53秒前
55秒前
zf2023发布了新的文献求助10
57秒前
思源应助陌上花开采纳,获得10
57秒前
刘泽千完成签到,获得积分10
58秒前
梦回发布了新的文献求助80
1分钟前
1分钟前
1分钟前
1分钟前
伊笙完成签到 ,获得积分10
1分钟前
zf2023完成签到,获得积分10
1分钟前
1分钟前
呵呵完成签到,获得积分10
1分钟前
曲聋五发布了新的文献求助10
1分钟前
刘泽千发布了新的文献求助30
1分钟前
抹茶麻薯完成签到,获得积分20
1分钟前
科研小白发布了新的文献求助10
1分钟前
樱桃猴子应助长情黄蜂采纳,获得10
1分钟前
小肖完成签到 ,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135489
关于积分的说明 9412388
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716832