Prediction Interval Estimation of Aeroengine Remaining Useful Life Based on Bidirectional Long Short-Term Memory Network

预言 计算机科学 聚类分析 区间(图论) 数据挖掘 航空发动机 期限(时间) 模糊逻辑 钥匙(锁) 人工神经网络 人工智能 可靠性工程 工程类 数学 机械工程 组合数学 物理 量子力学 计算机安全
作者
Chuang Chen,Ningyun Lu,Bin Jiang,Yin Xing,Zheng Zhu
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:70: 1-13 被引量:59
标识
DOI:10.1109/tim.2021.3126006
摘要

Reliable and accurate aero-engine remaining useful life (RUL) prediction plays a key role in aero-engine prognostics and health management (PHM) system. However, due to the epistemic uncertainties associated with aero-engine systems, prediction errors are unavoidable and sometimes significant in traditional deterministic point prediction methods. To improve the accuracy and credibility of RUL prediction, a novel prediction interval (PI) estimation method is proposed to quantify the uncertainties in RUL prediction. The proposed method involves the data clustering, mathematical statistical analysis and deep learning techniques, and is achieved through offline and online phases. In the offline phase, an enhanced fuzzy c-means algorithm (FCM) is proposed to divide the aero-engine health status into several discrete states. After labeling the health state of each sampling point, PIs are computed for them. This step is achieved by the empirical distributions of errors associated with all instances belonging to the health state under consideration. In the online phase, a bidirectional long short-term memory (Bi-LSTM) network is employed to estimate the boundaries of point prediction, and thus the PI of aero-engine RUL is generated. The aero-engine degradation dataset from NASA is used to validate the proposed RUL PI estimation method. The results obtained indicate that the proposed method is a promising tool for providing reliable aero-engine RUL interval estimates, which can inform maintenance-related decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桃子发布了新的文献求助10
3秒前
3秒前
明小丽完成签到,获得积分10
5秒前
狂奔弟弟完成签到 ,获得积分10
7秒前
李沐唅完成签到 ,获得积分10
7秒前
顾矜应助麟钰采纳,获得10
8秒前
桃子完成签到,获得积分10
9秒前
12秒前
13秒前
迹K完成签到,获得积分10
14秒前
风趣海吃饭侠完成签到 ,获得积分10
16秒前
16秒前
英姑应助科研通管家采纳,获得10
16秒前
桐桐应助科研通管家采纳,获得10
17秒前
张北海应助科研通管家采纳,获得10
17秒前
坦率的匪应助科研通管家采纳,获得10
17秒前
思思发布了新的文献求助10
17秒前
丘比特应助科研通管家采纳,获得10
17秒前
17秒前
思源应助科研通管家采纳,获得10
17秒前
充电宝应助科研通管家采纳,获得10
17秒前
汉堡包应助科研通管家采纳,获得10
17秒前
bkagyin应助科研通管家采纳,获得10
17秒前
17秒前
坦率的匪应助科研通管家采纳,获得10
17秒前
orixero应助科研通管家采纳,获得30
17秒前
天天快乐应助科研通管家采纳,获得10
18秒前
wanci应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
疯狂的冬瓜完成签到,获得积分10
20秒前
ding应助波波采纳,获得10
20秒前
22秒前
研友_LX66qZ完成签到,获得积分10
23秒前
至幸完成签到,获得积分10
26秒前
么大人发布了新的文献求助10
26秒前
你好呀嘻嘻完成签到 ,获得积分10
26秒前
27秒前
至幸发布了新的文献求助10
29秒前
三颗星南极三完成签到 ,获得积分10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997611
求助须知:如何正确求助?哪些是违规求助? 3537154
关于积分的说明 11270819
捐赠科研通 3276323
什么是DOI,文献DOI怎么找? 1806885
邀请新用户注册赠送积分活动 883576
科研通“疑难数据库(出版商)”最低求助积分说明 809975