计算机视觉
人工智能
惯性测量装置
视觉里程计
计算机科学
里程计
全球导航卫星系统应用
磁强计
可视化
机器人
立体摄像机
滑动窗口协议
惯性参考系
管道(软件)
移动机器人
窗口(计算)
全球定位系统
量子力学
电信
操作系统
磁场
物理
程序设计语言
作者
Ziqiang Wang,Mei Li,Dingkun Zhou,Zedong Zheng
出处
期刊:International Conference on Robotics and Automation
日期:2021-05-30
被引量:2
标识
DOI:10.1109/icra48506.2021.9561410
摘要
Robust and accurate localization plays a key role in autonomous driving and robot applications. To utilize the complementary properties of different sensors, we present a novel tightly-coupled approach to combine the local (stereo cameras, IMU) and global sensors (magnetometer, GNSS). We jointly optimize all the model parameters through one active window. The visual part integrates constraints from static stereo into the photometric bundle adjustment pipeline of dynamic multiview stereo. Accumulating IMU information between keyframes, magnetometer and GNSS measurements are all inserted into the active window as additional constrains among all the keyframes. Through these, our method can realize globally drift-free and locally accurate state estimation. We evaluate the effectiveness of our system on public datasets under with real-world experiments.
科研通智能强力驱动
Strongly Powered by AbleSci AI