An Effective Multi-Task Two-Stage Network with the Cross-Scale Training Strategy for Multi-Scale Image Super Resolution

计算机科学 卷积神经网络 人工智能 推论 任务(项目管理) 图像质量 像素 比例(比率) 过程(计算) 计算机视觉 模式识别(心理学)
作者
Jucheng Yang,Feng Wei,Yaxin Bai,Meiran Zuo,Xiao Sun,Yarui Chen
出处
期刊:Electronics [Multidisciplinary Digital Publishing Institute]
卷期号:10 (19): 2434-2434 被引量:1
标识
DOI:10.3390/electronics10192434
摘要

Convolutional neural networks and the per-pixel loss function have shown their potential to be the best combination for super-resolving severely degraded images. However, there are still challenges, such as the massive number of parameters requiring prohibitive memory and vast computing and storage resources as well as time-consuming training and testing. What is more, the per-pixel loss measured by L2 and the Peak Signal-to-Noise Ratio do not correlate well with human perception of image quality, since L2 simply does not capture the intricate characteristics of human visual systems. To address these issues, we propose an effective two-stage hourglass network with multi-task co-optimization, which enables the entire network to focus on training and testing time and inherent image patterns such as local luminance, contrast, structure and data distribution. Moreover, to avoid overwhelming memory overheads, our model is capable of performing real-time single image multi-scale super-resolution, so it is memory-friendly, meaning that memory space is utilized efficiently. In addition, in order to best use the underlying structure and perception of image quality and the intermediate estimates during the inference process, we introduce a cross-scale training strategy with 2×, 3× and 4× image super-resolution. This effective multi-task two-stage network with the cross-scale strategy for multi-scale image super-resolution is named EMTCM. Quantitative and qualitative experiment results show that the proposed EMTCM network outperforms state-of-the-art methods in recovering high-quality images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
gudujian870928完成签到,获得积分10
3秒前
幽默的太阳完成签到 ,获得积分10
3秒前
洁净斑马发布了新的文献求助10
4秒前
旺仔发布了新的文献求助30
4秒前
YAN完成签到,获得积分10
4秒前
虚拟莫茗完成签到 ,获得积分10
4秒前
无相完成签到 ,获得积分10
5秒前
Lucas应助zmx采纳,获得10
6秒前
崔康佳完成签到,获得积分10
8秒前
xueluxin完成签到 ,获得积分10
8秒前
yin完成签到,获得积分10
9秒前
黄花完成签到 ,获得积分10
9秒前
好名字完成签到,获得积分10
10秒前
ww完成签到,获得积分10
10秒前
12秒前
Tk完成签到,获得积分10
13秒前
研友_LX7478完成签到,获得积分10
13秒前
小张想发刊完成签到,获得积分10
13秒前
doin完成签到,获得积分10
17秒前
爱笑的访梦完成签到,获得积分10
17秒前
eee完成签到,获得积分10
18秒前
青藤完成签到,获得积分10
19秒前
自信向梦发布了新的文献求助10
19秒前
小老头儿完成签到,获得积分10
20秒前
和光同尘完成签到,获得积分20
23秒前
728完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
25秒前
lll完成签到,获得积分10
26秒前
研友_Z119gZ完成签到 ,获得积分10
26秒前
一点完成签到,获得积分10
27秒前
Migrol完成签到,获得积分10
27秒前
lllllllll完成签到,获得积分10
28秒前
hhcosy完成签到,获得积分10
29秒前
llly完成签到,获得积分10
30秒前
qsmei2020完成签到,获得积分10
31秒前
宫跃然完成签到,获得积分10
31秒前
31秒前
32秒前
Snail6完成签到,获得积分10
32秒前
34秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015737
求助须知:如何正确求助?哪些是违规求助? 3555681
关于积分的说明 11318391
捐赠科研通 3288879
什么是DOI,文献DOI怎么找? 1812301
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027