An Effective Multi-Task Two-Stage Network with the Cross-Scale Training Strategy for Multi-Scale Image Super Resolution

计算机科学 卷积神经网络 人工智能 推论 任务(项目管理) 图像质量 像素 比例(比率) 过程(计算) 计算机视觉 模式识别(心理学)
作者
Jucheng Yang,Feng Wei,Yaxin Bai,Meiran Zuo,Xiao Sun,Yarui Chen
出处
期刊:Electronics [MDPI AG]
卷期号:10 (19): 2434-2434 被引量:1
标识
DOI:10.3390/electronics10192434
摘要

Convolutional neural networks and the per-pixel loss function have shown their potential to be the best combination for super-resolving severely degraded images. However, there are still challenges, such as the massive number of parameters requiring prohibitive memory and vast computing and storage resources as well as time-consuming training and testing. What is more, the per-pixel loss measured by L2 and the Peak Signal-to-Noise Ratio do not correlate well with human perception of image quality, since L2 simply does not capture the intricate characteristics of human visual systems. To address these issues, we propose an effective two-stage hourglass network with multi-task co-optimization, which enables the entire network to focus on training and testing time and inherent image patterns such as local luminance, contrast, structure and data distribution. Moreover, to avoid overwhelming memory overheads, our model is capable of performing real-time single image multi-scale super-resolution, so it is memory-friendly, meaning that memory space is utilized efficiently. In addition, in order to best use the underlying structure and perception of image quality and the intermediate estimates during the inference process, we introduce a cross-scale training strategy with 2×, 3× and 4× image super-resolution. This effective multi-task two-stage network with the cross-scale strategy for multi-scale image super-resolution is named EMTCM. Quantitative and qualitative experiment results show that the proposed EMTCM network outperforms state-of-the-art methods in recovering high-quality images.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zxdnbb发布了新的文献求助10
1秒前
七柚完成签到,获得积分10
5秒前
9秒前
12秒前
14秒前
sixone完成签到 ,获得积分10
17秒前
LYZSh完成签到,获得积分10
17秒前
wang发布了新的文献求助10
17秒前
18秒前
19秒前
tuanheqi应助123采纳,获得30
20秒前
呆萌擎宇完成签到,获得积分20
21秒前
尺素寸心发布了新的文献求助10
23秒前
丛丛发布了新的文献求助30
24秒前
科研通AI2S应助11采纳,获得10
27秒前
28秒前
轻风发布了新的文献求助10
29秒前
田様应助尺素寸心采纳,获得10
29秒前
大气青枫发布了新的文献求助10
32秒前
汉堡包应助cui采纳,获得10
34秒前
37秒前
42秒前
ZrAug21发布了新的文献求助10
43秒前
学术小天才完成签到 ,获得积分10
43秒前
47秒前
49秒前
狸毛毛完成签到,获得积分10
51秒前
称心嵩完成签到,获得积分20
52秒前
52秒前
lulu完成签到,获得积分10
53秒前
58秒前
cui发布了新的文献求助10
59秒前
59秒前
guoyx完成签到,获得积分10
1分钟前
1分钟前
yxy完成签到,获得积分10
1分钟前
小二郎应助义气的灯泡采纳,获得10
1分钟前
1分钟前
浴火重生发布了新的文献求助10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138618
求助须知:如何正确求助?哪些是违规求助? 2789599
关于积分的说明 7791655
捐赠科研通 2445949
什么是DOI,文献DOI怎么找? 1300780
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079