Enhancing bifunctional electrodes of oxygen vacancy abundant ZnCo2O4 nanosheets for supercapacitor and oxygen evolution

超级电容器 过电位 材料科学 析氧 电催化剂 化学工程 双功能 电极 功率密度 尖晶石 氧气 纳米片 电化学 纳米技术 化学 催化作用 冶金 有机化学 物理化学 工程类 功率(物理) 物理 量子力学
作者
Kun Xiang,Dan Wu,Yun Fan,Wen You,Dongdong Zhang,Jing‐Li Luo,Xian‐Zhu Fu
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:425: 130583-130583 被引量:94
标识
DOI:10.1016/j.cej.2021.130583
摘要

Earth-abundant spinel ZnCo2O4 is considered as promising electrode materials in the fields of energy storage (e.g. supercapacitor) and conversion (e.g. electrocatalytic water oxidation), but it is still limited by the insufficient material utilization efficiency and poor conductivity. Herein, the two-dimensional ZnCo2O4 nanosheets with abundant oxygen vacancies (OV-ZnCo2O4 nanosheets) have been constructed by facile hydrothermal approach and NaBH4 reduction treatment. The experimental and theoretical calculation results reveal that the as-prepared materials possess enhanced electrical conductivity, modulated electronic structure, increased active sites, and optimal adsorption energies for intermediates. As a supercapacitor electrode, the OV-ZnCo2O4 nanosheets deliver inspiring specific capacitance of 2110.6F g−1 at 1 A g−1. Furthermore, the asymmetric supercapacitor (ASC) assembled by OV-ZnCo2O4 nanosheets//active carbon (AC) exhibits a high energy density of 34.6 Wh kg−1 at a power density of 160 W kg−1. As an electrocatalyst for oxygen evolution reaction (OER), the OV-ZnCo2O4 nanosheets only need remarkably low overpotential of 324 mV to achieve a current density of 10 mA cm−2 in 0.1 M KOH. This work provides an effective strategy for construction of multifunctional electrochemical energy materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
打打应助习习采纳,获得10
1秒前
bluer发布了新的文献求助10
2秒前
3秒前
3秒前
科研通AI5应助无悔呀采纳,获得10
3秒前
毛毛虫完成签到,获得积分10
3秒前
快乐小文完成签到,获得积分10
3秒前
Nooooo发布了新的文献求助10
4秒前
4秒前
贰鸟应助木之以南采纳,获得10
4秒前
无不破哉完成签到,获得积分20
4秒前
Dai WJ发布了新的文献求助10
5秒前
黄大师完成签到 ,获得积分10
5秒前
愤怒的河虾完成签到,获得积分10
5秒前
所所应助XIXI采纳,获得10
5秒前
麻麻发布了新的文献求助10
6秒前
经法发布了新的文献求助10
6秒前
MailkMonk完成签到,获得积分20
6秒前
cici完成签到,获得积分10
7秒前
快乐小文发布了新的文献求助30
7秒前
惜寒完成签到 ,获得积分10
7秒前
7秒前
Grayball应助无奈梦岚采纳,获得10
7秒前
此生不换完成签到 ,获得积分10
8秒前
寻舟者完成签到,获得积分10
9秒前
9秒前
9秒前
橘子屿布丁完成签到,获得积分10
10秒前
10秒前
Zhy完成签到,获得积分10
11秒前
bzy发布了新的文献求助10
11秒前
11秒前
风趣秋白完成签到,获得积分10
11秒前
情怀应助tanmeng77采纳,获得10
11秒前
若空完成签到 ,获得积分10
12秒前
典雅又夏发布了新的文献求助10
12秒前
XIXI完成签到,获得积分10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678