Efficient fusion of spiking neural networks and FET-type gas sensors for a fast and reliable artificial olfactory system

人工神经网络 计算机科学 尖峰神经网络 反向传播 电压 人工智能 集合(抽象数据类型) 瞬态(计算机编程) 模式识别(心理学) 生物系统 算法 计算机硬件 电气工程 工程类 生物 程序设计语言 操作系统
作者
Dongseok Kwon,Gyuweon Jung,Wonjun Shin,Yujeong Jeong,Seongbin Hong,Seongbin Oh,Jaehyeon Kim,Jong‐Ho Bae,Byung‐Gook Park,Jong-Ho Lee
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:345: 130419-130419 被引量:31
标识
DOI:10.1016/j.snb.2021.130419
摘要

A new artificial olfactory system based on a spiking neural network (SNN) and field-effect transistor (FET)-type gas sensors is proposed for quickly and reliably detecting toxic gases. A FET-type gas sensor was fabricated with a micro-heater, and an In2O3 film was used as a sensing material for detecting NO2 and H2S gases. The sensor was investigated with the micro-heater bias, pre-bias, and gas concentration, and an efficient data set to be used for training a neural network was prepared using the measured transient currents of the sensors within 4.8 s. Then, an artificial neural network (ANN) using the backpropagation algorithm, which is the most popular algorithm in pattern recognition, was applied to train the data set. The weights trained in the ANNs were transferred into the conductance of synaptic devices in the hardware-based SNN. The SNN using only 12 sensors shows a low error rate (∼3 %) in predicting the concentrations of NO2 and H2S. In addition, since the neuron in the SNN directly converts the sensor current into the voltage spike rate, the SNN predicts the gas concentration in real-time (within ∼5 s). Finally, considering the effect of the read fluctuation of the sensors, it turns out that the hardware-based SNN outperforms conventional machine learning algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助夜轩岚采纳,获得10
2秒前
慕青应助123采纳,获得10
2秒前
2秒前
2秒前
3秒前
3秒前
爆米花应助小陈1122采纳,获得10
4秒前
无油烟完成签到,获得积分10
4秒前
谦让寻绿完成签到,获得积分10
5秒前
Hoper完成签到,获得积分10
6秒前
香蕉觅云应助hdd采纳,获得10
7秒前
过客发布了新的文献求助10
9秒前
三年三班三井寿完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
爆米花应助科研通管家采纳,获得10
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
ding应助科研通管家采纳,获得10
15秒前
15秒前
今后应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
shhoing应助科研通管家采纳,获得10
15秒前
15秒前
思源应助科研通管家采纳,获得10
15秒前
15秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
16秒前
orixero应助科研通管家采纳,获得50
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
斯文败类应助科研通管家采纳,获得10
16秒前
16秒前
16秒前
慕青应助科研通管家采纳,获得10
16秒前
务实的犀牛完成签到,获得积分10
16秒前
墨守成规发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5537977
求助须知:如何正确求助?哪些是违规求助? 4625294
关于积分的说明 14595311
捐赠科研通 4565812
什么是DOI,文献DOI怎么找? 2502718
邀请新用户注册赠送积分活动 1481107
关于科研通互助平台的介绍 1452360