Efficient fusion of spiking neural networks and FET-type gas sensors for a fast and reliable artificial olfactory system

人工神经网络 计算机科学 尖峰神经网络 反向传播 电压 人工智能 集合(抽象数据类型) 瞬态(计算机编程) 模式识别(心理学) 生物系统 算法 计算机硬件 电气工程 工程类 操作系统 生物 程序设计语言
作者
Dongseok Kwon,Gyuweon Jung,Wonjun Shin,Yujeong Jeong,Seongbin Hong,Seongbin Oh,Jaehyeon Kim,Jong‐Ho Bae,Byung‐Gook Park,Jong-Ho Lee
出处
期刊:Sensors and Actuators B-chemical [Elsevier BV]
卷期号:345: 130419-130419 被引量:31
标识
DOI:10.1016/j.snb.2021.130419
摘要

A new artificial olfactory system based on a spiking neural network (SNN) and field-effect transistor (FET)-type gas sensors is proposed for quickly and reliably detecting toxic gases. A FET-type gas sensor was fabricated with a micro-heater, and an In2O3 film was used as a sensing material for detecting NO2 and H2S gases. The sensor was investigated with the micro-heater bias, pre-bias, and gas concentration, and an efficient data set to be used for training a neural network was prepared using the measured transient currents of the sensors within 4.8 s. Then, an artificial neural network (ANN) using the backpropagation algorithm, which is the most popular algorithm in pattern recognition, was applied to train the data set. The weights trained in the ANNs were transferred into the conductance of synaptic devices in the hardware-based SNN. The SNN using only 12 sensors shows a low error rate (∼3 %) in predicting the concentrations of NO2 and H2S. In addition, since the neuron in the SNN directly converts the sensor current into the voltage spike rate, the SNN predicts the gas concentration in real-time (within ∼5 s). Finally, considering the effect of the read fluctuation of the sensors, it turns out that the hardware-based SNN outperforms conventional machine learning algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
动听的店员完成签到,获得积分20
刚刚
加油少年完成签到,获得积分10
刚刚
刚刚
科研通AI5应助不吃香菜采纳,获得10
刚刚
wuhuhu发布了新的文献求助10
刚刚
1秒前
小蘑菇应助舒适一手采纳,获得10
1秒前
vooov发布了新的文献求助10
1秒前
1秒前
haveatry发布了新的文献求助30
1秒前
丘比特应助无言已对采纳,获得10
2秒前
达达罗发布了新的文献求助10
2秒前
2秒前
小周周完成签到 ,获得积分10
3秒前
我蛋挞呢应助戽斗采纳,获得50
3秒前
万能图书馆应助jinyu采纳,获得10
4秒前
Geass发布了新的文献求助10
5秒前
5秒前
潇洒皮带完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
万信心发布了新的文献求助10
5秒前
5秒前
戚薇发布了新的文献求助10
5秒前
cwy完成签到,获得积分10
5秒前
taff完成签到,获得积分20
6秒前
受伤丹妗发布了新的文献求助10
6秒前
6秒前
犹豫的晓兰完成签到,获得积分20
7秒前
8秒前
8秒前
英俊的铭应助JUAN采纳,获得10
8秒前
8秒前
yangben完成签到,获得积分10
8秒前
科研通AI2S应助被动科研采纳,获得10
8秒前
8秒前
9秒前
快乐旭尧完成签到,获得积分10
9秒前
10秒前
赘婿应助灰灰采纳,获得10
10秒前
jstagey发布了新的文献求助10
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604100
求助须知:如何正确求助?哪些是违规求助? 4012619
关于积分的说明 12424227
捐赠科研通 3693241
什么是DOI,文献DOI怎么找? 2036105
邀请新用户注册赠送积分活动 1069230
科研通“疑难数据库(出版商)”最低求助积分说明 953709