A survey of uncertainty in deep neural networks

人工神经网络 计算机科学 领域(数学) 人工智能 不确定度量化 机器学习 贝叶斯概率 深层神经网络 不确定度分析 数学 模拟 纯数学
作者
Jakob Gawlikowski,Cedrique Rovile Njieutcheu Tassi,Mohsin Ali,Jong‐Seok Lee,Matthias Humt,Jianxiang Feng,Anna Kruspe,Rudolph Triebel,Peter Jung,Ribana Roscher,Muhammad Shahzad,Wen Yang,Richard Bamler,Xiao Xiang Zhu
出处
期刊:Artificial Intelligence Review [Springer Science+Business Media]
卷期号:56 (S1): 1513-1589 被引量:303
标识
DOI:10.1007/s10462-023-10562-9
摘要

Abstract Over the last decade, neural networks have reached almost every field of science and become a crucial part of various real world applications. Due to the increasing spread, confidence in neural network predictions has become more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over- or under-confidence, i.e. are badly calibrated. To overcome this, many researchers have been working on understanding and quantifying uncertainty in a neural network’s prediction. As a result, different types and sources of uncertainty have been identified and various approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. For that, a comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and irreducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks (BNNs), ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for calibrating neural networks, and give an overview of existing baselines and available implementations. Different examples from the wide spectrum of challenges in the fields of medical image analysis, robotics, and earth observation give an idea of the needs and challenges regarding uncertainties in the practical applications of neural networks. Additionally, the practical limitations of uncertainty quantification methods in neural networks for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
深情安青应助wao采纳,获得10
2秒前
2秒前
3秒前
SciGPT应助hhh采纳,获得10
4秒前
李健应助刘家小姐姐采纳,获得10
4秒前
酷炫中蓝发布了新的文献求助10
4秒前
ddm发布了新的文献求助10
6秒前
zxcvbnm完成签到 ,获得积分10
6秒前
6秒前
科研通AI5应助您得疼采纳,获得10
7秒前
101发布了新的文献求助10
7秒前
......完成签到,获得积分10
8秒前
优质演绎了我的青春完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
有魅力的彩虹完成签到,获得积分20
9秒前
358489228完成签到,获得积分10
9秒前
10秒前
YDSG完成签到,获得积分10
11秒前
11秒前
星辰大海应助佳临天下采纳,获得10
11秒前
lan发布了新的文献求助10
12秒前
12秒前
12秒前
夏目发布了新的文献求助10
12秒前
13秒前
13秒前
15秒前
15秒前
可爱的刚发布了新的文献求助10
17秒前
17秒前
xiaoyi发布了新的文献求助10
18秒前
mmmi发布了新的文献求助10
18秒前
sherry完成签到,获得积分20
20秒前
20秒前
鸣笛应助sweet采纳,获得20
20秒前
彭于晏应助lan采纳,获得10
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4624551
求助须知:如何正确求助?哪些是违规求助? 4024016
关于积分的说明 12456116
捐赠科研通 3708552
什么是DOI,文献DOI怎么找? 2045495
邀请新用户注册赠送积分活动 1077550
科研通“疑难数据库(出版商)”最低求助积分说明 960082