A survey of uncertainty in deep neural networks

人工神经网络 计算机科学 领域(数学) 人工智能 不确定度量化 机器学习 贝叶斯概率 深层神经网络 不确定度分析 数学 模拟 纯数学
作者
Jakob Gawlikowski,Cedrique Rovile Njieutcheu Tassi,Mohsin Ali,Jong‐Seok Lee,Matthias Humt,Jianxiang Feng,Anna Kruspe,Rudolph Triebel,Peter Jung,Ribana Roscher,Muhammad Shahzad,Wen Yang,Richard Bamler,Xiao Xiang Zhu
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:56 (S1): 1513-1589 被引量:638
标识
DOI:10.1007/s10462-023-10562-9
摘要

Abstract Over the last decade, neural networks have reached almost every field of science and become a crucial part of various real world applications. Due to the increasing spread, confidence in neural network predictions has become more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over- or under-confidence, i.e. are badly calibrated. To overcome this, many researchers have been working on understanding and quantifying uncertainty in a neural network’s prediction. As a result, different types and sources of uncertainty have been identified and various approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. For that, a comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and irreducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks (BNNs), ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for calibrating neural networks, and give an overview of existing baselines and available implementations. Different examples from the wide spectrum of challenges in the fields of medical image analysis, robotics, and earth observation give an idea of the needs and challenges regarding uncertainties in the practical applications of neural networks. Additionally, the practical limitations of uncertainty quantification methods in neural networks for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冷静的网络完成签到 ,获得积分10
2秒前
hyl-tcm完成签到 ,获得积分10
3秒前
4秒前
wx完成签到 ,获得积分10
8秒前
聪明的雨南完成签到,获得积分10
10秒前
Lune7完成签到 ,获得积分10
13秒前
litliw完成签到 ,获得积分10
15秒前
游婧完成签到 ,获得积分10
15秒前
快乐的幼丝完成签到 ,获得积分10
18秒前
坦率无剑完成签到,获得积分10
23秒前
研友Bn完成签到 ,获得积分10
24秒前
小章鱼完成签到 ,获得积分10
28秒前
12305014077完成签到 ,获得积分10
32秒前
休斯顿完成签到,获得积分10
33秒前
平淡纸飞机完成签到 ,获得积分10
33秒前
迅速友容完成签到 ,获得积分10
34秒前
忧心的藏鸟完成签到 ,获得积分10
35秒前
fjmelite完成签到 ,获得积分10
35秒前
leo完成签到,获得积分10
41秒前
Skywalk满天星完成签到,获得积分10
48秒前
少年完成签到 ,获得积分10
56秒前
庄怀逸完成签到 ,获得积分10
57秒前
naiyouqiu1989完成签到,获得积分10
1分钟前
MRJJJJ完成签到,获得积分10
1分钟前
whuhustwit完成签到,获得积分10
1分钟前
满当当完成签到 ,获得积分10
1分钟前
Hu完成签到,获得积分10
1分钟前
Shandongdaxiu完成签到 ,获得积分10
1分钟前
AA完成签到 ,获得积分10
1分钟前
1分钟前
Lucas应助小贩采纳,获得10
1分钟前
Hu发布了新的文献求助10
1分钟前
Neko完成签到,获得积分10
1分钟前
1分钟前
俊逸吐司完成签到 ,获得积分10
1分钟前
稳重母鸡完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
行云流水完成签到,获得积分10
1分钟前
daggeraxe完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5281674
求助须知:如何正确求助?哪些是违规求助? 4435953
关于积分的说明 13806884
捐赠科研通 4316253
什么是DOI,文献DOI怎么找? 2369210
邀请新用户注册赠送积分活动 1364528
关于科研通互助平台的介绍 1328027