A survey of uncertainty in deep neural networks

人工神经网络 计算机科学 领域(数学) 人工智能 不确定度量化 机器学习 贝叶斯概率 深层神经网络 不确定度分析 数学 模拟 纯数学
作者
Jakob Gawlikowski,Cedrique Rovile Njieutcheu Tassi,Mohsin Ali,Jong‐Seok Lee,Matthias Humt,Jianxiang Feng,Anna Kruspe,Rudolph Triebel,Peter Jung,Ribana Roscher,Muhammad Shahzad,Wen Yang,Richard Bamler,Xiao Xiang Zhu
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:56 (S1): 1513-1589 被引量:303
标识
DOI:10.1007/s10462-023-10562-9
摘要

Abstract Over the last decade, neural networks have reached almost every field of science and become a crucial part of various real world applications. Due to the increasing spread, confidence in neural network predictions has become more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over- or under-confidence, i.e. are badly calibrated. To overcome this, many researchers have been working on understanding and quantifying uncertainty in a neural network’s prediction. As a result, different types and sources of uncertainty have been identified and various approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. For that, a comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and irreducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks (BNNs), ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for calibrating neural networks, and give an overview of existing baselines and available implementations. Different examples from the wide spectrum of challenges in the fields of medical image analysis, robotics, and earth observation give an idea of the needs and challenges regarding uncertainties in the practical applications of neural networks. Additionally, the practical limitations of uncertainty quantification methods in neural networks for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
申思发布了新的文献求助10
3秒前
钦点小黑完成签到 ,获得积分10
3秒前
5秒前
开心完成签到,获得积分10
5秒前
jieli完成签到,获得积分10
6秒前
lalalala发布了新的文献求助10
7秒前
温柔半梦发布了新的文献求助10
10秒前
10秒前
薄荷发布了新的文献求助10
11秒前
wlz完成签到,获得积分10
12秒前
lalalala完成签到,获得积分20
14秒前
XZY发布了新的文献求助10
15秒前
舒心的耷完成签到,获得积分10
16秒前
锦瑟完成签到,获得积分10
17秒前
18秒前
CC完成签到,获得积分10
18秒前
18秒前
XIL完成签到,获得积分10
23秒前
竹外桃花发布了新的文献求助10
23秒前
可爱山彤发布了新的文献求助10
25秒前
gege关注了科研通微信公众号
32秒前
xianyaoz完成签到 ,获得积分10
33秒前
WMT完成签到 ,获得积分10
38秒前
39秒前
42秒前
Zhou完成签到,获得积分10
44秒前
可爱山彤完成签到,获得积分20
45秒前
赶路人发布了新的文献求助10
45秒前
高大鸭子完成签到 ,获得积分10
45秒前
香蕉觅云应助gdh采纳,获得10
48秒前
51秒前
54秒前
ccc完成签到,获得积分10
54秒前
yyjw完成签到 ,获得积分10
55秒前
Darren发布了新的文献求助50
56秒前
搜集达人应助赶路人采纳,获得10
57秒前
Leone发布了新的文献求助10
59秒前
安古妮稀发布了新的文献求助10
59秒前
gdh发布了新的文献求助10
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137638
求助须知:如何正确求助?哪些是违规求助? 2788565
关于积分的说明 7787590
捐赠科研通 2444902
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023