A survey of uncertainty in deep neural networks

人工神经网络 计算机科学 领域(数学) 人工智能 不确定度量化 机器学习 贝叶斯概率 深层神经网络 不确定度分析 数学 模拟 纯数学
作者
Jakob Gawlikowski,Cedrique Rovile Njieutcheu Tassi,Mohsin Ali,Jong‐Seok Lee,Matthias Humt,Jianxiang Feng,Anna Kruspe,Rudolph Triebel,Peter Jung,Ribana Roscher,Muhammad Shahzad,Wen Yang,Richard Bamler,Xiao Xiang Zhu
出处
期刊:Artificial Intelligence Review [Springer Nature]
卷期号:56 (S1): 1513-1589 被引量:303
标识
DOI:10.1007/s10462-023-10562-9
摘要

Abstract Over the last decade, neural networks have reached almost every field of science and become a crucial part of various real world applications. Due to the increasing spread, confidence in neural network predictions has become more and more important. However, basic neural networks do not deliver certainty estimates or suffer from over- or under-confidence, i.e. are badly calibrated. To overcome this, many researchers have been working on understanding and quantifying uncertainty in a neural network’s prediction. As a result, different types and sources of uncertainty have been identified and various approaches to measure and quantify uncertainty in neural networks have been proposed. This work gives a comprehensive overview of uncertainty estimation in neural networks, reviews recent advances in the field, highlights current challenges, and identifies potential research opportunities. It is intended to give anyone interested in uncertainty estimation in neural networks a broad overview and introduction, without presupposing prior knowledge in this field. For that, a comprehensive introduction to the most crucial sources of uncertainty is given and their separation into reducible model uncertainty and irreducible data uncertainty is presented. The modeling of these uncertainties based on deterministic neural networks, Bayesian neural networks (BNNs), ensemble of neural networks, and test-time data augmentation approaches is introduced and different branches of these fields as well as the latest developments are discussed. For a practical application, we discuss different measures of uncertainty, approaches for calibrating neural networks, and give an overview of existing baselines and available implementations. Different examples from the wide spectrum of challenges in the fields of medical image analysis, robotics, and earth observation give an idea of the needs and challenges regarding uncertainties in the practical applications of neural networks. Additionally, the practical limitations of uncertainty quantification methods in neural networks for mission- and safety-critical real world applications are discussed and an outlook on the next steps towards a broader usage of such methods is given.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sweet关注了科研通微信公众号
刚刚
刚刚
赘婿应助wangfu采纳,获得10
1秒前
1秒前
1秒前
pipge完成签到,获得积分20
1秒前
2秒前
澳澳发布了新的文献求助10
2秒前
3秒前
清脆的映天完成签到,获得积分10
3秒前
yl驳回了sweetbearm应助
3秒前
隐形曼青应助2鱼采纳,获得10
3秒前
通~发布了新的文献求助10
3秒前
香蕉觅云应助junzilan采纳,获得10
4秒前
张老涵发布了新的文献求助10
4秒前
灌饼发布了新的文献求助30
4秒前
罗实发布了新的文献求助10
4秒前
张张发布了新的文献求助10
5秒前
木香发布了新的文献求助10
5秒前
朴实以松发布了新的文献求助10
5秒前
在水一方应助神帅酷哥采纳,获得10
5秒前
6秒前
6秒前
pipge发布了新的文献求助30
6秒前
6秒前
万能图书馆应助卡卡采纳,获得10
6秒前
牛虫虫发布了新的文献求助30
7秒前
7秒前
柔弱飞雪完成签到,获得积分10
7秒前
一种信仰完成签到 ,获得积分10
7秒前
8秒前
8秒前
9秒前
YE完成签到,获得积分10
9秒前
2鱼完成签到,获得积分10
9秒前
FooLeup立仔完成签到,获得积分10
9秒前
10秒前
顾矜应助JUll采纳,获得10
10秒前
Amai发布了新的文献求助20
10秒前
小马甲应助Lucas采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794