电解
电解水
电力转天然气
电解质
制氢
聚合物电解质膜电解
阳极
电化学
高压电解
分解水
化学工程
生物量(生态学)
材料科学
可再生能源
氢
能量载体
化学能
化学
电极
催化作用
有机化学
电气工程
地质学
工程类
物理化学
海洋学
光催化
作者
Yan‐Xin Chen,Alessandro Lavacchi,Manuela Bevilacqua,Jonathan Filippi,Massimo Innocenti,Andrea Marchionni,Werner Oberhauser,L. Wang,Francesco Vizza
摘要
The energetic convenience of electrolytic water splitting is limited by thermodynamics. Consequently, significant levels of hydrogen production can only be obtained with an electrical energy consumption exceeding 45 kWh kg(-1)H2. Electrochemical reforming allows the overcoming of such thermodynamic limitations by replacing oxygen evolution with the oxidation of biomass-derived alcohols. Here we show that the use of an original anode material consisting of palladium nanoparticles deposited on to a three-dimensional architecture of titania nanotubes allows electrical energy savings up to 26.5 kWh kg(-1)H2 as compared with proton electrolyte membrane water electrolysis. A net energy analysis shows that for bio-ethanol with energy return of the invested energy larger than 5.1 (for example, cellulose), the electrochemical reforming energy balance is advantageous over proton electrolyte membrane water electrolysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI