亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A support vector machine approach to unintentional vehicle lane departure prediction

支持向量机 高级驾驶员辅助系统 计算机科学 人工智能 二元分类 机器学习 时间序列 核(代数) 模拟 工程类 数学 组合数学
作者
Alhadi Ali Albousefi,Hao Ying,Dimitar Filev,Fazal Syed,Kwaku O. Prakah-Asante,Finn Tseng,Hsin-Hsiang Yang
标识
DOI:10.1109/ivs.2014.6856602
摘要

Advanced driver assistance systems, such as unintentional lane departure warning systems, have recently drawn much attention and R & D efforts. Such a system may assist the driver by monitoring the driver or vehicle behaviors to predict/detect driving situations (e.g., lane departure) and alert the driver to take corrective action. In this paper, we show how the support vector machine (SVM) methodology can potentially provide enhanced unintentional lane departure prediction, which is a new method relative to literature. Our binary SVM employed the Radial Basis Function kernel to classify time series of select vehicle variables. The SVM was trained and tested using the driver experiment data generated by VIRTTEX, a hydraulically powered 6-degrees-of-freedom moving base driving simulator at Ford Motor Company. The data that we used represented 16 drowsy subjects (three-hour driving time per subject) and six control subjects (20 minutes driving per subject), all of which drove a simulated 2000 Volvo S80. The vehicle variables were all sampled at 50 Hz. There were a total of 3,508 unintentional lane departure occurrences for the drowsy drivers and only 23 for four of the six control drivers (two had none). The SVM was trained by over 60,000 time series examples (the actual number depended on the prediction horizon) created from 50% of the lane departures. The training data were removed from the testing data. During the testing, the SVM made a lane departure prediction at every sampling time for every one of the 22 drivers (over 6.8 million predictions in total). The overall sensitivity and specificity of the SVM with a 0.2-second prediction horizon for the 22 drivers were 99.77465% and 99.99997%, respectively. The SVM predicted, on average 0.200181 seconds in advance, lane departure correctly for all the control drivers, but missed 4 of the 1,758 and gave false positives for another 2 for the drowsy drivers. For the prediction horizon of 0.4s, there was 1 false positive case for the control subjects, and the false negative and false positive cases rose substantially to 10 and 137 for the drowsy drivers, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
姚老表完成签到,获得积分10
23秒前
善学以致用应助百里幻竹采纳,获得10
58秒前
晶晶完成签到,获得积分10
1分钟前
1分钟前
1分钟前
hwen1998完成签到 ,获得积分10
2分钟前
2分钟前
沿途有你完成签到 ,获得积分10
2分钟前
wangwei完成签到 ,获得积分10
3分钟前
Excalibur应助八二力采纳,获得10
3分钟前
yoyo发布了新的文献求助20
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
竹夕完成签到 ,获得积分10
4分钟前
矢思然完成签到,获得积分10
4分钟前
玛琳卡迪马完成签到,获得积分10
4分钟前
嗯哼应助yoyo采纳,获得20
4分钟前
科目三应助zxcvb666采纳,获得10
5分钟前
科研通AI2S应助zxcvb666采纳,获得80
5分钟前
5分钟前
blm发布了新的文献求助10
5分钟前
小二郎应助blm采纳,获得10
6分钟前
无花果应助三点水采纳,获得10
7分钟前
7分钟前
三点水发布了新的文献求助10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
善学以致用应助三点水采纳,获得10
8分钟前
8分钟前
百里幻竹发布了新的文献求助10
8分钟前
8分钟前
8分钟前
9分钟前
9分钟前
sniffgo完成签到 ,获得积分10
9分钟前
LioXH发布了新的文献求助10
11分钟前
LioXH完成签到 ,获得积分10
11分钟前
11分钟前
科研通AI2S应助科研通管家采纳,获得10
11分钟前
chiyudoubao完成签到,获得积分10
12分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Neuromuscular and Electrodiagnostic Medicine Board Review 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3460124
求助须知:如何正确求助?哪些是违规求助? 3054392
关于积分的说明 9041963
捐赠科研通 2743768
什么是DOI,文献DOI怎么找? 1505225
科研通“疑难数据库(出版商)”最低求助积分说明 695610
邀请新用户注册赠送积分活动 694867