应用数学
随机偏微分方程
微分方程
离散化
偏微分方程
数学
物理
作者
P. Dunzlaff,R. D. Strauss,M. S. Potgieter
标识
DOI:10.1016/j.cpc.2015.03.008
摘要
Abstract The numerical solution of transport equations for energetic charged particles in space is generally very costly in terms of time. Besides the use of multi-core CPUs and computer clusters in order to decrease the computation times, high performance calculations on graphics processing units (GPUs) have become available during the last years. In this work we introduce and describe a GPU-accelerated implementation of Parker’s equation using Stochastic Differential Equations (SDEs) for the simulation of the transport of energetic charged particles with the CUDA toolkit, which is the focus of this work. We briefly discuss the set of SDEs arising from Parker’s transport equation and their application to boundary value problems such as that of the Jovian magnetosphere. We compare the runtimes of the GPU code with a CPU version of the same algorithm. Compared to the CPU implementation (using OpenMP and eight threads) we find a performance increase of about a factor of 10–60, depending on the assumed set of parameters. Furthermore, we benchmark our simulation using the results of an existing SDE implementation of Parker’s transport equation.
科研通智能强力驱动
Strongly Powered by AbleSci AI