Triple co-culture of human alveolar epithelium, endothelium and macrophages for studying the interaction of nanocarriers with the air-blood barrier

促炎细胞因子 体外 内化 细胞生物学 细胞培养 化学 纳米载体 免疫学 材料科学 生物物理学 生物 炎症 细胞 纳米技术 生物化学 纳米颗粒 遗传学
作者
Ana Costa,Cristiane de Souza Carvalho‐Wodarz,Vítor Seabra,Bruno Sarmento,Claus‐Michael Lehr
出处
期刊:Acta Biomaterialia [Elsevier BV]
卷期号:91: 235-247 被引量:48
标识
DOI:10.1016/j.actbio.2019.04.037
摘要

Predictive in vitro models are valuable alternatives to animal experiments for evaluating the transport of molecules and (nano)particles across biological barriers. In this work, an improved triple co-culture of air-blood barrier was set-up, being exclusively constituted by human cell lines that allowed to perform experiments at air-liquid interface. Epithelial NCI-H441 cells and endothelial HPMEC-ST1.6R cells were seeded at the apical and basolateral sides of a Transwell® membrane, respectively. Differentiated THP-1 cells were also added on the top of the epithelial layer to mimetize alveolar macrophages. Translocation and permeability studies were also performed. It was observed that around 14–18% of 50-nm Fluorospheres®, but less than 1% of 1.0 µm-Fluorospheres® could pass through the triple co-culture as well as the epithelial monoculture and bi-cultures, leading to the conclusion that both in vitro models represented a significant biological barrier and could differentiate the translocation of different sized systems. The permeability of isoniazid was similar between the epithelial monoculture and bi-cultures when compared with the triple co-culture. However, when in vitro models were challenged with lipopolysaccharide, the release of interleukin-8 increased in the bi-cultures and triple co-culture, whereas the NCI-H441 monoculture did not show any proinflammatory response. Overall, this new in vitro model is a potential tool to assess the translocation of nanoparticles across the air-blood barrier both in healthy state and proinflammatory state. The use of in vitro models for drug screening as an alternative to animal experiments is increasing over the last years, in particular, models to assess the permeation through biological membranes. Cell culture models are mainly constituted by one type of cells forming a confluent monolayer, but due to its oversimplicity they are being replaced by three-dimensional (3D) in vitro models, that present a higher complexity and reflect more the in vivo-like conditions. Being the pulmonary route one of the most studied approaches for drug administration, several in vitro models of alveolar epithelium have been used to assess the drug permeability and translocation and toxicity of nanocarriers. Nevertheless, there is still a lack of 3D in vitro models that mimic the morphology and the physiological behavior of the alveolar-capillary membrane. In this study, a 3D in vitro model of the air-blood barrier constituted by three different relevant cell lines was established and morphologically characterized. Different permeability/translocation studies were performed to achieve differences/similarities comparatively to each monoculture (epithelium, endothelium, and macrophages) and bi-cultures (epithelial cells either cultured with endothelial cells or macrophages). The release of pro-inflammatory cytokines (namely interleukin-8) after incubation of lipopolysaccharide, a pro-inflammatory inductor, was also evaluated in this work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
xiaobaye完成签到,获得积分10
1秒前
大壮发布了新的文献求助10
2秒前
guo发布了新的文献求助10
3秒前
nihao发布了新的文献求助10
3秒前
SRsora发布了新的文献求助10
3秒前
小二郎应助等待的鱼采纳,获得10
4秒前
pine发布了新的文献求助10
5秒前
浮游应助HTT采纳,获得10
5秒前
6秒前
8秒前
爆米花应助15348547697采纳,获得10
9秒前
9秒前
9秒前
9秒前
10秒前
11秒前
12秒前
深度精分患者完成签到,获得积分10
13秒前
13秒前
难过安白发布了新的文献求助10
13秒前
歪咪发布了新的文献求助10
13秒前
wanci应助儒雅鸡采纳,获得10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
汉堡包应助riverflowing采纳,获得10
15秒前
15秒前
15秒前
15秒前
16秒前
上官若男应助发sci的女人采纳,获得30
16秒前
美好斓发布了新的文献求助50
16秒前
polite发布了新的文献求助10
17秒前
红豆面包发布了新的文献求助10
17秒前
充电宝应助积极的凌波采纳,获得10
19秒前
hewd3发布了新的文献求助10
19秒前
XiaoXiao发布了新的文献求助20
19秒前
kiki发布了新的文献求助30
20秒前
江江jiang完成签到 ,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4886324
求助须知:如何正确求助?哪些是违规求助? 4171259
关于积分的说明 12944161
捐赠科研通 3931774
什么是DOI,文献DOI怎么找? 2157191
邀请新用户注册赠送积分活动 1175636
关于科研通互助平台的介绍 1080152