已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Who gets the blame for service failures? Attribution of responsibility toward robot versus human service providers and service firms

服务(商务) 机器人 责备 归属 服务机器人 服务设计 第三产业 业务 计算机科学 心理学 服务提供商 人工智能 营销 社会心理学
作者
Xuying Leo,Young Eun Huh
出处
期刊:Computers in Human Behavior [Elsevier]
卷期号:113: 106520-106520 被引量:102
标识
DOI:10.1016/j.chb.2020.106520
摘要

Service robots are on the rise. Technological advances in engineering, artificial intelligence, and machine learning enable robots to take over tasks traditionally carried out by humans. Despite the rapid increase in the employment of robots, there are still frequent failures in the performance of service robots. This research examines how and to what extent people attribute responsibility toward service robots in such cases of service failures compared to when humans provide the same service failures. Participants were randomly assigned to read vignettes describing a service failure either by a service robot or a human and were then asked who they thought was responsible for the service failure. The results of three experiments show that people attributed less responsibility toward a robot than a human for the service failure because people perceive robots to have less controllability over the task. However, people attributed more responsibility toward a service firm when a robot delivered a failed service than when a human delivered the same failed service. This research advances theory regarding the perceived responsibility of humans versus robots in the service sector, as well as the perceived responsibility of the firms involved. There are also important practical considerations raised by this research, such as how utilizing service robots may influence customer attitudes toward service firms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助暴躁的板栗采纳,获得10
5秒前
思源应助美满花生采纳,获得10
5秒前
6秒前
wanqingw完成签到,获得积分10
7秒前
fbbggb发布了新的文献求助10
10秒前
天天好心覃完成签到 ,获得积分10
13秒前
14秒前
adkdad完成签到,获得积分10
15秒前
17秒前
SciGPT应助背后的寻云采纳,获得10
18秒前
徐徐图之完成签到 ,获得积分10
18秒前
zheng发布了新的文献求助10
20秒前
22秒前
23秒前
多多发布了新的文献求助10
23秒前
李木子完成签到 ,获得积分10
24秒前
25秒前
Qing发布了新的文献求助10
27秒前
YJ888发布了新的文献求助10
30秒前
威武果汁发布了新的文献求助10
31秒前
Jae完成签到 ,获得积分10
32秒前
Tatw完成签到 ,获得积分10
33秒前
每天我都睡得好完成签到 ,获得积分10
35秒前
缓慢珠完成签到,获得积分20
35秒前
搜集达人应助Qing采纳,获得10
36秒前
852应助多多采纳,获得10
37秒前
刘刘完成签到 ,获得积分10
37秒前
啾啾完成签到,获得积分10
38秒前
情怀应助搞学术太难了采纳,获得10
42秒前
LANER完成签到 ,获得积分10
44秒前
44秒前
47秒前
FashionBoy应助淳于穆采纳,获得10
53秒前
CodeCraft应助zzz采纳,获得10
53秒前
龙骑士25完成签到 ,获得积分10
55秒前
56秒前
嗯哼应助科研通管家采纳,获得20
58秒前
梁朝伟应助科研通管家采纳,获得10
58秒前
小二郎应助科研通管家采纳,获得10
59秒前
梁朝伟应助科研通管家采纳,获得10
59秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314323
求助须知:如何正确求助?哪些是违规求助? 2946587
关于积分的说明 8530889
捐赠科研通 2622334
什么是DOI,文献DOI怎么找? 1434442
科研通“疑难数据库(出版商)”最低求助积分说明 665312
邀请新用户注册赠送积分活动 650855