Temperature-dependent band gaps in several semiconductors: from the role of electron–phonon renormalization

凝聚态物理 带隙 半导体 声子 离子键合 钻石 重整化 材料科学 电子 化学 物理 离子 量子力学 光电子学 复合材料
作者
Yiming Zhang,Ziyu Wang,Jinyang Xi,Jiong Yang
出处
期刊:Journal of Physics: Condensed Matter [IOP Publishing]
卷期号:32 (47): 475503-475503 被引量:39
标识
DOI:10.1088/1361-648x/aba45d
摘要

Temperature dependence of band gap is one of the most fundamental properties for semiconductors, and has strong influences on many applications. The renormalization of the band gap at finite temperatures is due to the lattice expansion and the phonon-induced atomic vibrations. In this work, we apply the recently-developed electron–phonon renormalization (EPR) method to study the temperature-dependent band gap in some classical covalent (diamond, Si, and SiC) and ionic semiconductors (MgO and NaCl). The contributions from both the lattice expansion and the phonon-induced atomic vibrations at finite temperatures are considered. The results show that the band gaps Eg all decrease as temperature T increases, consistent with the experiments and other theoretical studies (e.g., from 0 K to 1500 K, the reductions are ∼0.451 eV for diamond and ∼1.148 eV for MgO, respectively). The covalent compounds investigated show weaker temperature dependences of Egs than the ionic compounds, due to the much weaker lattice expansions and therefore low contributions from these. The zero-point motion effect has greater influence on the band gap in semiconductors with light atoms, such as diamond (reduction ∼0.437 eV), due to larger atomic displacements. By decomposing the EPR effect into respective phonon modes, it is found that the high-frequency optical phonon vibrations dominate the temperature-dependent band gap in both covalent and ionic compounds. Our work provides the fundamental understandings on the temperature-dependent band gaps caused by lattice dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵巧剑心发布了新的文献求助10
刚刚
默己发布了新的文献求助10
刚刚
平贝花完成签到 ,获得积分10
刚刚
lhlhl发布了新的文献求助10
1秒前
小蘑菇应助橙啊程采纳,获得10
1秒前
英姑应助cherish_7宝采纳,获得10
1秒前
完美世界应助MM采纳,获得10
2秒前
3秒前
张立佳完成签到 ,获得积分10
3秒前
4秒前
YL完成签到 ,获得积分10
5秒前
沉迷科研无法自拔完成签到,获得积分10
6秒前
风中无血发布了新的文献求助10
7秒前
平贝花关注了科研通微信公众号
7秒前
伞桥完成签到,获得积分10
7秒前
田様应助xujingyi采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
顺利的友卉关注了科研通微信公众号
8秒前
8秒前
Wu发布了新的文献求助10
9秒前
安静绿草完成签到,获得积分10
9秒前
10秒前
11秒前
可爱的函函应助灵巧剑心采纳,获得10
11秒前
TayBob完成签到,获得积分10
12秒前
所所应助JLLLLLLLL采纳,获得10
13秒前
上好佳完成签到,获得积分10
14秒前
无心的钢铁侠完成签到,获得积分10
14秒前
奋斗的猫咪完成签到,获得积分10
14秒前
16秒前
Zjt完成签到,获得积分10
16秒前
会飞的鱼完成签到,获得积分10
16秒前
共享精神应助刻苦的如霜采纳,获得10
17秒前
ydxhh完成签到,获得积分10
17秒前
jeff完成签到,获得积分10
18秒前
小号完成签到,获得积分10
19秒前
科目三应助小薇薇采纳,获得10
19秒前
YJK关闭了YJK文献求助
20秒前
xujingyi发布了新的文献求助10
22秒前
王来敏完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646513
求助须知:如何正确求助?哪些是违规求助? 4771610
关于积分的说明 15035503
捐赠科研通 4805306
什么是DOI,文献DOI怎么找? 2569599
邀请新用户注册赠送积分活动 1526597
关于科研通互助平台的介绍 1485858