Temperature-dependent band gaps in several semiconductors: from the role of electron–phonon renormalization

凝聚态物理 带隙 半导体 声子 离子键合 钻石 重整化 材料科学 电子 化学 物理 离子 量子力学 光电子学 复合材料
作者
Yiming Zhang,Ziyu Wang,Jinyang Xi,Jiong Yang
出处
期刊:Journal of Physics: Condensed Matter [IOP Publishing]
卷期号:32 (47): 475503-475503 被引量:30
标识
DOI:10.1088/1361-648x/aba45d
摘要

Temperature dependence of band gap is one of the most fundamental properties for semiconductors, and has strong influences on many applications. The renormalization of the band gap at finite temperatures is due to the lattice expansion and the phonon-induced atomic vibrations. In this work, we apply the recently-developed electron–phonon renormalization (EPR) method to study the temperature-dependent band gap in some classical covalent (diamond, Si, and SiC) and ionic semiconductors (MgO and NaCl). The contributions from both the lattice expansion and the phonon-induced atomic vibrations at finite temperatures are considered. The results show that the band gaps Eg all decrease as temperature T increases, consistent with the experiments and other theoretical studies (e.g., from 0 K to 1500 K, the reductions are ∼0.451 eV for diamond and ∼1.148 eV for MgO, respectively). The covalent compounds investigated show weaker temperature dependences of Egs than the ionic compounds, due to the much weaker lattice expansions and therefore low contributions from these. The zero-point motion effect has greater influence on the band gap in semiconductors with light atoms, such as diamond (reduction ∼0.437 eV), due to larger atomic displacements. By decomposing the EPR effect into respective phonon modes, it is found that the high-frequency optical phonon vibrations dominate the temperature-dependent band gap in both covalent and ionic compounds. Our work provides the fundamental understandings on the temperature-dependent band gaps caused by lattice dynamics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
突突突发布了新的文献求助10
刚刚
1秒前
3秒前
小蘑菇应助呜呜呜采纳,获得10
3秒前
荷欢笙发布了新的文献求助10
3秒前
4秒前
都是发布了新的文献求助10
5秒前
7秒前
嘟嘟嘟完成签到,获得积分10
7秒前
赵佳璐发布了新的文献求助10
9秒前
gqb发布了新的文献求助10
9秒前
10秒前
清璃发布了新的文献求助10
10秒前
11秒前
Dushine关注了科研通微信公众号
11秒前
zhuhaot发布了新的文献求助50
11秒前
零食完成签到 ,获得积分10
11秒前
11秒前
12秒前
咩吖给咩吖的求助进行了留言
13秒前
叶博完成签到,获得积分10
13秒前
DumBell完成签到,获得积分10
13秒前
呜呜呜发布了新的文献求助10
14秒前
15秒前
cherry发布了新的文献求助10
15秒前
16秒前
嘟嘟嘟发布了新的文献求助10
17秒前
17秒前
18秒前
Why发布了新的文献求助10
18秒前
学术丁真完成签到,获得积分10
18秒前
温暖的幼菱完成签到,获得积分10
18秒前
呜呜呜完成签到,获得积分20
19秒前
归tu发布了新的文献求助10
20秒前
20秒前
星辰大海应助Ningxin采纳,获得10
20秒前
21秒前
Miracle完成签到,获得积分10
21秒前
zz发布了新的文献求助10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145912
求助须知:如何正确求助?哪些是违规求助? 2797359
关于积分的说明 7823805
捐赠科研通 2453697
什么是DOI,文献DOI怎么找? 1305818
科研通“疑难数据库(出版商)”最低求助积分说明 627574
版权声明 601491