Time-Domain Learned Digital Back-Propagation

计算机科学 偏振模色散 时域 电子工程 频域 信号处理 梯度下降 有限冲激响应 传输(电信) 信号(编程语言) 非线性系统 算法 数字信号处理 电信 人工智能 工程类 光纤 物理 量子力学 人工神经网络 计算机视觉 程序设计语言
作者
Eric Sillekens,Wenting Yi,Daniel Semrau,Alessandro Ottino,Boris Karanov,Domaniç Lavery,Lídia Galdino,Polina Bayvel,Robert I. Killey,Sujie Zhou,Kevin Law,Jack Chen
标识
DOI:10.1109/sips50750.2020.9195253
摘要

Performance for optical fibre transmissions can be improved by digitally reversing the channel environment. When this is achieved by simulating short segment by separating the chromatic dispersion and Kerr nonlinearity, this is known as digital back-propagation (DBP). Time-domain DBP has the potential to decrease the complexity with respect to frequency domain algorithms. However, when using finer step in the algorithm, the accuracy of the individual smaller steps suffers. By adapting the chromatic dispersion filters of the individual steps to simulated or measured data this problem can be mitigated. Machine learning frameworks have enabled the gradient-descent style adaptation for large algorithms. This allows to adopt many dispersion filters to accurately represent the transmission in reverse. The proposed technique has been used in an experimental demonstration of learned time-domain DBP using a four channel 64-GBd dual-polarization 64-QAM signal transmission over a 10 span recirculating loop totalling 1014 km. The signal processing scheme consists of alternating finite impulse response filters with nonlinear phase shifts, where the filter coefficient were adapted using the experimental measurements. Performance gains to linear compensation in terms of signal-to-noise ratio improvements were comparable to those achieved with conventional frequency-domain DBP. Our experimental investigation shows the potential of digital signal processing techniques with learned parameters in improving the performance of high data rate long-haul optical fibre transmission systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yl发布了新的文献求助10
刚刚
大福发布了新的文献求助10
刚刚
蔫清发布了新的文献求助10
刚刚
毓雅发布了新的文献求助10
刚刚
1秒前
2秒前
zhzhzh发布了新的文献求助10
2秒前
XDF发布了新的文献求助30
2秒前
干净秋寒发布了新的文献求助10
2秒前
Owen应助日富一日采纳,获得10
3秒前
马孔多暴雨完成签到,获得积分10
3秒前
3秒前
bb完成签到,获得积分10
4秒前
5秒前
凶狠的傲蕾完成签到,获得积分20
5秒前
量子星尘发布了新的文献求助10
6秒前
哈皮完成签到,获得积分10
6秒前
烟花应助泡泡采纳,获得10
6秒前
蔫清完成签到,获得积分10
6秒前
wwwwwwww完成签到,获得积分10
7秒前
ttt发布了新的文献求助10
7秒前
7秒前
慕青应助落寞的尔芙采纳,获得30
7秒前
8秒前
研友_ZrBNxZ发布了新的文献求助10
8秒前
房恩羽发布了新的文献求助10
8秒前
汉堡包应助Nam22采纳,获得10
8秒前
幸福烤鸡完成签到,获得积分10
8秒前
SciGPT应助sunchaoyue采纳,获得10
9秒前
华仔应助甜蜜凡波采纳,获得10
9秒前
9秒前
yyqx完成签到 ,获得积分10
9秒前
Lucas应助QIQI采纳,获得10
9秒前
9秒前
王二完成签到,获得积分10
9秒前
研友_rLmrgn发布了新的文献求助10
10秒前
10秒前
慢慢的地理人完成签到,获得积分10
11秒前
李爱国应助yyl采纳,获得10
11秒前
weihe完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719256
求助须知:如何正确求助?哪些是违规求助? 5255673
关于积分的说明 15288302
捐赠科研通 4869143
什么是DOI,文献DOI怎么找? 2614653
邀请新用户注册赠送积分活动 1564667
关于科研通互助平台的介绍 1521894