A high-throughput system combining microfluidic hydrogel droplets with deep learning for screening the antisolvent-crystallization conditions of active pharmaceutical ingredients

微流控 结晶 活性成分 吞吐量 纳米技术 材料科学 Crystal(编程语言) 过程(计算) 相(物质) 蛋白质结晶 计算机科学 工艺工程 化学工程 化学 生物信息学 有机化学 工程类 操作系统 生物 电信 程序设计语言 无线
作者
Zhenning Su,Jinxu He,Peipei Zhou,Hongkai Wu,Jianhua Zhou
出处
期刊:Lab on a Chip [The Royal Society of Chemistry]
卷期号:20 (11): 1907-1916 被引量:21
标识
DOI:10.1039/d0lc00153h
摘要

Crystallization of active pharmaceutical ingredients (APIs) is a crucial process in the pharmaceutical industry due to its great impact in drug efficacy. However, conventional approaches for screening the optimal crystallization conditions of APIs are usually time-consuming, labor-intensive and expensive. Recently, droplet microfluidic technology has offered an alternative strategy for high-throughput screening of crystallization conditions. Despite its many advantages such as low sample consumption, reduced operation time, increased throughput, etc., some challenges remain to be solved, such as instability of droplets in the long-term and tedious efforts required for extracting useful information from massive data. To solve these problems, a high-throughput system that combined microfluidic hydrogel droplets with deep learning was proposed for the first time to screen the antisolvent-crystallization conditions of APIs. In this system, stable hydrogel droplets containing different concentrations of indomethacin, its solvent and antisolvent were generated on a chip. Crystals of indomethacin with different morphologies were formed in hydrogel droplets, and their optical images were captured by a camera. Then, deep learning was applied to identify the hundreds of indomethacin crystal images and successfully classify the crystal morphologies in a short time; a ternary phase diagram was drawn by combining the experimental results with the recognition results of crystal morphologies, and was used to guide the scale-up preparations of indomethacin crystals as desired. This system, which integrated high throughput preparation, characterization and data analysis, is also useful for screening the crystallization conditions and processes of semiconductors, catalysts, agrochemicals, proteins and other specialty chemicals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
55发布了新的文献求助10
刚刚
dingtc0609_完成签到,获得积分20
刚刚
nanyuan123发布了新的文献求助20
1秒前
1秒前
tomato发布了新的文献求助10
1秒前
wangechun完成签到,获得积分10
2秒前
科研通AI2S应助时尚的菲音采纳,获得10
3秒前
3秒前
慎独发布了新的文献求助10
4秒前
tlx完成签到,获得积分10
4秒前
4秒前
杨仔发布了新的文献求助10
4秒前
4秒前
4秒前
5秒前
世说新语发布了新的文献求助10
5秒前
桃桃杨乐多完成签到,获得积分10
5秒前
6秒前
baihehuakai完成签到 ,获得积分10
7秒前
粗犷的老虎完成签到,获得积分10
8秒前
9秒前
tongzehui完成签到,获得积分10
9秒前
迷人的冥完成签到,获得积分10
9秒前
挺好完成签到,获得积分10
9秒前
JamesPei应助慎独采纳,获得10
10秒前
10秒前
qs发布了新的文献求助10
11秒前
catsfat完成签到,获得积分10
12秒前
yaofox1完成签到,获得积分10
13秒前
peng发布了新的文献求助10
14秒前
orixero应助积极墨镜采纳,获得10
14秒前
乐乐应助tomato采纳,获得10
15秒前
15秒前
今后应助wangqiqi采纳,获得10
15秒前
不配.应助顺毕采纳,获得20
16秒前
bboyyujie完成签到,获得积分10
16秒前
欣慰的绮露完成签到,获得积分10
16秒前
17秒前
安详的冷安完成签到,获得积分10
17秒前
Halo完成签到,获得积分10
17秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124803
求助须知:如何正确求助?哪些是违规求助? 2775148
关于积分的说明 7725553
捐赠科研通 2430633
什么是DOI,文献DOI怎么找? 1291291
科研通“疑难数据库(出版商)”最低求助积分说明 622121
版权声明 600328