中国仓鼠卵巢细胞
新陈代谢
代谢通量分析
过程(计算)
糖酵解
代谢途径
焊剂(冶金)
生物化学
代谢组学
代谢控制分析
化学
细胞代谢
生物
计算机科学
生物信息学
生物技术
胰岛素
受体
操作系统
有机化学
作者
Dénes Zalai,Krisztina Koczka,László Párta,Patrick Wechselberger,Tobias Klein,Christoph Herwig
摘要
A growing body of knowledge is available on the cellular regulation of overflow metabolism in mammalian hosts of recombinant protein production. However, to develop strategies to control the regulation of overflow metabolism in cell culture processes, the effect of process parameters on metabolism has to be well understood. In this study, we investigated the effect of pH and temperature shift timing on lactate metabolism in a fed-batch Chinese hamster ovary (CHO) process by using a Design of Experiments (DoE) approach. The metabolic switch to lactate consumption was controlled in a broad range by the proper timing of pH and temperature shifts. To extract process knowledge from the large experimental dataset, we proposed a novel methodological concept and demonstrated its usefulness with the analysis of lactate metabolism. Time-resolved metabolic flux analysis and PLS-R VIP were combined to assess the correlation of lactate metabolism and the activity of the major intracellular pathways. Whereas the switch to lactate uptake was mainly triggered by the decrease in the glycolytic flux, lactate uptake was correlated to TCA activity in the last days of the cultivation. These metabolic interactions were visualized on simple mechanistic plots to facilitate the interpretation of the results. Taken together, the combination of knowledge-based mechanistic modeling and data-driven multivariate analysis delivered valuable insights into the metabolic control of lactate production and has proven to be a powerful tool for the analysis of large metabolic datasets.
科研通智能强力驱动
Strongly Powered by AbleSci AI