TH‐CD‐206‐09: Learning‐Based MRI‐CT Prostate Registration Using Spare Patch‐Deformation Dictionary

人工智能 图像配准 计算机科学 计算机视觉 医学影像学 模式识别(心理学) 图像(数学)
作者
Xiaofeng Yang,A. Jani,Peter J. Rossi,Hui Mao,Walter J. Curran,T Liu
出处
期刊:Medical Physics [Wiley]
卷期号:43 (6Part46): 3884-3885
标识
DOI:10.1118/1.4958190
摘要

Purpose: To enable MRI‐guided prostate radiotherapy, MRI‐CT deformable registration is required to map the MRI‐defined tumor and key organ contours onto the CT images. Due to the intrinsic differences in grey‐level intensity characteristics between MRI and CT images, the integration of MRI into CT‐based radiotherapy is very challenging. We are developing a learning‐based registration approach to address this technical challenge. Methods: We propose to estimate the deformation between MRI and CT images in a patch‐wise fashion by using the sparse representation technique. Specifically, we assume that two image patches should follow the same deformation if their patch‐wise appearance patterns are similar. We first extract a set of key points in the new CT image. Then, for each key point, we adaptively construct a coupled dictionary from the training MRI‐CT images, where each coupled element includes both appearance and deformation of the same image patch. After calculating the sparse coefficients in representing the patch appearance of each key point based on the constructed dictionary, we can predict the deformation for this point by applying the same sparse coefficients to the respective deformations in the dictionary. Results: This registration technique was validated with 10 prostate‐cancer patients’ data and its performance was compared with the commonly used free‐form‐deformation‐based registration. Several landmarks in both images were identified to evaluate the accuracy of our approach. Overall, the averaged target registration error of the intensity‐based registration and the proposed method was 3.8±0.4 mm and 1.9±0.3 mm, respectively. Conclusion: We have developed a novel prostate MR‐CT registration approach based on patch‐deformation dictionary, demonstrated its clinical feasibility, and validated its accuracy. This technique will either reduce or compensate for the effect of patient‐specific treatment variation measured during the course of radiotherapy, is therefore well‐suited for a number of MRI‐guided adaptive radiotherapy, and potentially enhance prostate radiotherapy treatment outcome.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咿咿呀呀完成签到,获得积分10
刚刚
SGQT完成签到,获得积分10
1秒前
LCC发布了新的文献求助10
1秒前
小阿飞完成签到,获得积分10
1秒前
水牛发布了新的文献求助10
1秒前
汪爷爷发布了新的文献求助10
1秒前
37完成签到 ,获得积分10
2秒前
千早爱音完成签到 ,获得积分10
2秒前
玄学大哥完成签到,获得积分10
2秒前
BioGO发布了新的文献求助10
3秒前
深情安青应助su采纳,获得10
4秒前
4秒前
星晴遇见花海完成签到 ,获得积分10
4秒前
欢乐佩奇完成签到,获得积分10
4秒前
zxc167完成签到,获得积分10
4秒前
平常含巧完成签到,获得积分10
4秒前
fox完成签到 ,获得积分10
5秒前
轻松绮兰完成签到,获得积分10
5秒前
禾风完成签到,获得积分10
5秒前
崔洪瑞完成签到,获得积分10
6秒前
羊羊完成签到,获得积分10
6秒前
tao完成签到 ,获得积分10
7秒前
零知识完成签到 ,获得积分10
7秒前
TheSail发布了新的文献求助10
8秒前
8秒前
pcr163应助hetao286采纳,获得100
8秒前
9秒前
薛人英完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
vv的平行宇宙完成签到,获得积分10
11秒前
机密塔完成签到,获得积分10
11秒前
曾小莹完成签到,获得积分10
11秒前
11秒前
12秒前
hua完成签到,获得积分10
12秒前
斯文冷亦完成签到 ,获得积分10
13秒前
努力退休小博士完成签到 ,获得积分10
13秒前
popo完成签到,获得积分10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044