TH‐CD‐206‐09: Learning‐Based MRI‐CT Prostate Registration Using Spare Patch‐Deformation Dictionary

人工智能 图像配准 计算机科学 计算机视觉 医学影像学 模式识别(心理学) 图像(数学)
作者
Xiaofeng Yang,A. Jani,Peter J. Rossi,Hui Mao,Walter J. Curran,T Liu
出处
期刊:Medical Physics [Wiley]
卷期号:43 (6Part46): 3884-3885
标识
DOI:10.1118/1.4958190
摘要

Purpose: To enable MRI‐guided prostate radiotherapy, MRI‐CT deformable registration is required to map the MRI‐defined tumor and key organ contours onto the CT images. Due to the intrinsic differences in grey‐level intensity characteristics between MRI and CT images, the integration of MRI into CT‐based radiotherapy is very challenging. We are developing a learning‐based registration approach to address this technical challenge. Methods: We propose to estimate the deformation between MRI and CT images in a patch‐wise fashion by using the sparse representation technique. Specifically, we assume that two image patches should follow the same deformation if their patch‐wise appearance patterns are similar. We first extract a set of key points in the new CT image. Then, for each key point, we adaptively construct a coupled dictionary from the training MRI‐CT images, where each coupled element includes both appearance and deformation of the same image patch. After calculating the sparse coefficients in representing the patch appearance of each key point based on the constructed dictionary, we can predict the deformation for this point by applying the same sparse coefficients to the respective deformations in the dictionary. Results: This registration technique was validated with 10 prostate‐cancer patients’ data and its performance was compared with the commonly used free‐form‐deformation‐based registration. Several landmarks in both images were identified to evaluate the accuracy of our approach. Overall, the averaged target registration error of the intensity‐based registration and the proposed method was 3.8±0.4 mm and 1.9±0.3 mm, respectively. Conclusion: We have developed a novel prostate MR‐CT registration approach based on patch‐deformation dictionary, demonstrated its clinical feasibility, and validated its accuracy. This technique will either reduce or compensate for the effect of patient‐specific treatment variation measured during the course of radiotherapy, is therefore well‐suited for a number of MRI‐guided adaptive radiotherapy, and potentially enhance prostate radiotherapy treatment outcome.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhhhl完成签到,获得积分10
6秒前
wjm完成签到,获得积分10
8秒前
9秒前
11秒前
Timon完成签到,获得积分10
13秒前
包容芯完成签到 ,获得积分10
14秒前
14秒前
whyzz完成签到 ,获得积分10
16秒前
17秒前
17秒前
17秒前
拓海发布了新的文献求助10
17秒前
长生发布了新的文献求助10
19秒前
韩涵发布了新的文献求助10
20秒前
20秒前
laz发布了新的文献求助10
21秒前
21秒前
22秒前
77发布了新的文献求助10
23秒前
阿黎发布了新的文献求助10
23秒前
拓海完成签到,获得积分10
24秒前
居居应助科研通管家采纳,获得10
24秒前
wanci应助科研通管家采纳,获得10
24秒前
Hello应助科研通管家采纳,获得10
24秒前
8R60d8应助科研通管家采纳,获得10
25秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
贰鸟应助科研通管家采纳,获得20
25秒前
wanci应助科研通管家采纳,获得10
25秒前
慕青应助科研通管家采纳,获得10
25秒前
完美世界应助Rosie采纳,获得10
25秒前
8R60d8应助科研通管家采纳,获得10
25秒前
25秒前
NPC应助科研通管家采纳,获得30
25秒前
8R60d8应助科研通管家采纳,获得10
25秒前
25秒前
Singularity应助科研通管家采纳,获得10
25秒前
大个应助科研通管家采纳,获得10
25秒前
8R60d8应助科研通管家采纳,获得10
25秒前
传奇3应助科研通管家采纳,获得10
25秒前
25秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161827
求助须知:如何正确求助?哪些是违规求助? 2813059
关于积分的说明 7898411
捐赠科研通 2472080
什么是DOI,文献DOI怎么找? 1316331
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129