Mixed electric bus fleet scheduling problem with partial mixed-route and partial recharging

电气化 调度(生产过程) 地铁列车时刻表 计算机科学 公共交通 运筹学 过境(卫星) 运输工程 整数规划 数学优化 工程类 算法 数学 操作系统 电气工程
作者
Aijia Zhang,Tiezhu Li,Yue Zheng,Xuefeng Li,Muhammad Abdullah,Changyin Dong
出处
期刊:International Journal of Sustainable Transportation [Informa]
卷期号:16 (1): 73-83 被引量:27
标识
DOI:10.1080/15568318.2021.1914791
摘要

Given the goal of reducing emissions and saving energy, an increasing number of transit agencies have proposed electrification plans for public transport buses. The two fundamental challenges to adopting electric vehicles in transit operations are the purchase of appropriate electric vehicles to establish the bus fleet and the creation of an efficient schedule and recharging plan. This paper examines the multi-depot and multi-vehicle type electric vehicle scheduling problem with partial mixed-route strategy and partial recharging policy. The partial mixed-route strategy proposed in this paper allows multiple transit routes to operate in a more cost-efficient way. Moreover, it takes into account the bus allocation problem of the transit network fleet to meet the parking restrictions of each depot. The problem is formulated in a mixed-integer programming model, and an adaptive large neighborhood search (ALNS) algorithm with new mechanisms specific to the problem is proposed to apply the model in a more efficient manner. The dataset of a real transit network in Nanjing is used for case study, and the performance of ALNS is tested by using randomly generated instances from the dataset. The results show that the proposed method is effective in finding high quality solutions and adopting partial recharging policy can reduce the fleet size and the total cost while providing advantages depending on the operational parameters of the schedule. In addition, comparison of two schedules using different partial mixed-route strategies shows that there may be two sides of adopting mixed-route scheduling.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哈比发布了新的文献求助10
2秒前
Kamal完成签到,获得积分10
2秒前
7777juju完成签到,获得积分10
3秒前
TT完成签到,获得积分10
3秒前
饼饼发布了新的文献求助10
3秒前
打打应助淡定小蜜蜂采纳,获得10
3秒前
马海鑫发布了新的文献求助10
4秒前
5秒前
7秒前
8秒前
TT发布了新的文献求助10
8秒前
nihaolaojiu完成签到,获得积分10
10秒前
饼饼完成签到,获得积分10
10秒前
禹无极发布了新的文献求助10
10秒前
青苹果味美年达完成签到 ,获得积分10
10秒前
11秒前
314gjj完成签到,获得积分10
11秒前
善学以致用应助康康采纳,获得10
11秒前
12秒前
2020完成签到,获得积分10
12秒前
浑灵安完成签到 ,获得积分10
12秒前
13秒前
cc完成签到,获得积分10
13秒前
wenbo完成签到,获得积分10
14秒前
14秒前
16秒前
16秒前
17秒前
18秒前
顾矜应助迪迦奥特曼采纳,获得10
20秒前
奋斗忆灵发布了新的文献求助10
20秒前
21秒前
ghl发布了新的文献求助10
21秒前
21秒前
qll完成签到,获得积分10
21秒前
21秒前
22秒前
川农辅导员完成签到,获得积分10
24秒前
康康发布了新的文献求助10
26秒前
奋斗忆灵完成签到,获得积分10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143769
求助须知:如何正确求助?哪些是违规求助? 2795306
关于积分的说明 7814169
捐赠科研通 2451255
什么是DOI,文献DOI怎么找? 1304400
科研通“疑难数据库(出版商)”最低求助积分说明 627221
版权声明 601413