Skillful Precipitation Nowcasting using Deep Generative Models of Radar

临近预报 雷达 概率逻辑 降水 计算机科学 定量降水预报 气象学 人工智能 地理 电信
作者
Suman Ravuri,Karel Lenc,Matthew Willson,Dmitry Kangin,Rémi Lam,Piotr Mirowski,M. A. Fitzsimons,Maria Athanassiadou,Sheleem Kashem,Sam Madge,Rachel Prudden,Amol Mandhane,Aidan Clark,Andrew Brock,Karen Simonyan,Raia Hadsell,N. Robinson,Ellen Clancy,Alberto Arribas,Shakir Mohamed
出处
期刊:Cornell University - arXiv 被引量:24
摘要

Precipitation nowcasting, the high-resolution forecasting of precipitation up to two hours ahead, supports the real-world socio-economic needs of many sectors reliant on weather-dependent decision-making. State-of-the-art operational nowcasting methods typically advect precipitation fields with radar-based wind estimates, and struggle to capture important non-linear events such as convective initiations. Recently introduced deep learning methods use radar to directly predict future rain rates, free of physical constraints. While they accurately predict low-intensity rainfall, their operational utility is limited because their lack of constraints produces blurry nowcasts at longer lead times, yielding poor performance on more rare medium-to-heavy rain events. To address these challenges, we present a Deep Generative Model for the probabilistic nowcasting of precipitation from radar. Our model produces realistic and spatio-temporally consistent predictions over regions up to 1536 km x 1280 km and with lead times from 5-90 min ahead. In a systematic evaluation by more than fifty expert forecasters from the Met Office, our generative model ranked first for its accuracy and usefulness in 88% of cases against two competitive methods, demonstrating its decision-making value and ability to provide physical insight to real-world experts. When verified quantitatively, these nowcasts are skillful without resorting to blurring. We show that generative nowcasting can provide probabilistic predictions that improve forecast value and support operational utility, and at resolutions and lead times where alternative methods struggle.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助YHC采纳,获得10
1秒前
所所应助忧伤的尔白采纳,获得10
1秒前
3秒前
4秒前
川川子完成签到,获得积分10
5秒前
科研通AI5应助lxy采纳,获得10
5秒前
医学僧完成签到,获得积分10
6秒前
6秒前
亲豆丁儿发布了新的文献求助10
6秒前
7秒前
7秒前
星痕完成签到 ,获得积分10
7秒前
小机灵发布了新的文献求助10
8秒前
whl完成签到 ,获得积分10
8秒前
9秒前
9秒前
婷婷完成签到,获得积分10
10秒前
10秒前
10秒前
10秒前
陈小猫完成签到,获得积分10
11秒前
11秒前
胡总发布了新的文献求助10
11秒前
嘻嘻发布了新的文献求助30
12秒前
寒子川发布了新的文献求助10
12秒前
12秒前
12秒前
缘在山中完成签到,获得积分10
13秒前
加减乘除发布了新的文献求助10
14秒前
婷婷发布了新的文献求助10
14秒前
14秒前
hao发布了新的文献求助10
14秒前
chowjb发布了新的文献求助10
15秒前
英俊001发布了新的文献求助10
15秒前
Caixtmx发布了新的文献求助10
17秒前
17秒前
英姑应助复杂大象采纳,获得10
17秒前
18秒前
陈小猫发布了新的文献求助10
18秒前
19秒前
高分求助中
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Avialinguistics:The Study of Language for Aviation Purposes 270
Andrew Duncan Senior: Physician of the Enlightenment 240
University-Industry Collaboration and the Success Mechanism of Collaboration 210
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3681317
求助须知:如何正确求助?哪些是违规求助? 3233325
关于积分的说明 9807830
捐赠科研通 2944736
什么是DOI,文献DOI怎么找? 1614922
邀请新用户注册赠送积分活动 762388
科研通“疑难数据库(出版商)”最低求助积分说明 737381