Gradient-Constraint Super-Resolution Reconstruction Method Serving for Infrared Target Detection

红外线的 人工智能 计算机视觉 计算机科学 预处理器 正规化(语言学) 图像渐变 边缘检测 图像(数学) 模式识别(心理学) 图像处理 光学 物理
作者
Ran Li,Zhengqiang Xiong,Jie Yin,Yukui Zhang,Zhengxing Wang
出处
期刊:IEEE Consumer Electronics Magazine [Institute of Electrical and Electronics Engineers]
卷期号:12 (2): 14-25 被引量:2
标识
DOI:10.1109/mce.2021.3116440
摘要

Infrared images generally suffer from insufficient resolution, blurred edge, and low contrast, which increases the difficulty of infrared target detection. To solve this problem, a multiframe image super-resolution (SR) algorithm based on edge gradient regularization is proposed. In order to improve the resolution of the infrared image while simultaneously improving the visual saliency of weak infrared target, an edge-preserving regularization term is designed and introduced into the solving process of Bayesian problem. On this basis, an image enhancement method based on gradient-constraint decomposition is proposed to improve the contrast of the infrared image, which further lays a foundation for infrared target detection. To verify the effectiveness of the algorithm, experiments are respectively carried out on FLIR infrared datasets, real infrared images captured statically and real infrared images captured by a UAV equipped with an infrared camera. The experimental results demonstrate that the proposed method is capable of generating high-resolution images with good performance in terms of edge preservation and detail enhancement. Compared with the original input infrared images, the edge saliency of the targets inside the SR reconstructed infrared images is significantly enhanced, and thus provides a very promising image preprocessing method for infrared target detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lena完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
1秒前
2秒前
2秒前
你好谢谢你完成签到,获得积分20
2秒前
彭于晏应助笑点低怀亦采纳,获得10
2秒前
Ternura发布了新的文献求助10
3秒前
哈哈发布了新的文献求助10
3秒前
Ava应助难两全采纳,获得10
3秒前
Jasper应助123456采纳,获得10
4秒前
脑洞疼应助yhy采纳,获得10
4秒前
迅速星星完成签到 ,获得积分10
5秒前
完美世界应助百里随阴采纳,获得10
5秒前
5秒前
5秒前
5秒前
6秒前
多元醇发布了新的文献求助10
6秒前
Lucas应助红炉点血采纳,获得30
6秒前
勤恳的从波完成签到,获得积分20
6秒前
6秒前
呀呀完成签到,获得积分20
6秒前
刘cl发布了新的文献求助10
7秒前
7秒前
8秒前
TGU2331161488应助张弘采纳,获得20
8秒前
鲨头发布了新的文献求助10
8秒前
la2ygoo发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
10秒前
林一木发布了新的文献求助10
10秒前
10秒前
愉快尔烟发布了新的文献求助20
10秒前
方园完成签到,获得积分10
10秒前
沙漠水发布了新的文献求助10
11秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732848
求助须知:如何正确求助?哪些是违规求助? 3276965
关于积分的说明 9999955
捐赠科研通 2992651
什么是DOI,文献DOI怎么找? 1642404
邀请新用户注册赠送积分活动 780360
科研通“疑难数据库(出版商)”最低求助积分说明 748744