Numerical modelling of osteocyte growth on different bone tissue scaffolds

骨细胞 脚手架 生物医学工程 材料科学 剪应力 生物反应器 骨整合 再生(生物学) 组织工程 骨生长 细胞生长 化学 成骨细胞 复合材料 细胞生物学 植入 医学 生物 外科 内科学 有机化学 体外 生物化学
作者
Concepción Paz,Eduardo Suárez,C. Gil,Oscar Parga
出处
期刊:Computer Methods in Biomechanics and Biomedical Engineering [Informa]
卷期号:25 (6): 641-655 被引量:5
标识
DOI:10.1080/10255842.2021.1972290
摘要

The most common solution for the regeneration or replacement of damaged bones is the implantation of prostheses comprising ceramic or metallic materials. However, these implants are known to cause problems such as post-operative infections, collapse of the prosthesis, and lack of osseointegration. Consequently, bone tissue engineering was established because of the limitations of such implants. Osteogenic implants offer promising solutions for bone regeneration; however, three-dimensional scaffolds should be used as supportive structures. It is challenging to correctly design these structures and their compositions or properties to provide a microenvironment that promotes tissue regeneration and expedites bone formation. Computational fluid dynamics can be used to model the main phenomena that occur in bioreactors, such as cell metabolism, nutrient transport, and cell culture growth, or to model the influence of several key mechanisms related to the fluid medium, in particular, the wall shear stress. In this work, a new numerical bone cell growth model was developed, which considered the oxygen and nutrient consumption as well as the wall shear stress effect on cell proliferation. The model was implemented using 35 three-dimensional scaffolds of different porosities, and the effect of the main geometrical parameters involved in each scaffold type was analysed. The porosity plays an important role, however, a similar porosity did not guarantee similar shear stress or cell growth among the scaffolds. Randomised trabecular scaffolds, that more closely resembled trabecular bone, showed the highest cell growth values, so these are the best candidates for cell growth in a bioreactor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
会飞的狗托完成签到,获得积分10
1秒前
greenandblue发布了新的文献求助10
1秒前
琛琛多发文章完成签到,获得积分10
1秒前
花椒鱼完成签到 ,获得积分10
2秒前
SciGPT应助水形物语采纳,获得10
3秒前
3秒前
fangzhang发布了新的文献求助10
3秒前
泥過完成签到 ,获得积分10
4秒前
Lucas应助研友_菲采纳,获得10
4秒前
烟花应助Helium采纳,获得30
4秒前
山丘完成签到,获得积分10
4秒前
鱼雷发布了新的文献求助10
6秒前
6秒前
无奈的从云完成签到,获得积分10
6秒前
我是老大应助虚拟的酸奶采纳,获得10
10秒前
打打应助李辉采纳,获得10
12秒前
12秒前
晨曦完成签到,获得积分10
12秒前
13秒前
炙热尔阳完成签到 ,获得积分10
15秒前
Bamboo完成签到 ,获得积分10
15秒前
15秒前
edenz完成签到,获得积分10
16秒前
16秒前
星辰大海应助啊标采纳,获得10
17秒前
研友_VZG7GZ应助剑舞人间采纳,获得30
17秒前
17秒前
REY发布了新的文献求助10
18秒前
louyu完成签到 ,获得积分10
18秒前
1234完成签到,获得积分10
18秒前
PaoPao发布了新的文献求助10
19秒前
Jason完成签到,获得积分10
20秒前
ww完成签到,获得积分20
20秒前
nnnnnnn发布了新的文献求助50
21秒前
22秒前
1234发布了新的文献求助10
23秒前
共享精神应助细心的念薇采纳,获得10
23秒前
居居子完成签到,获得积分10
25秒前
爱静静应助REY采纳,获得10
26秒前
阡陌完成签到,获得积分10
26秒前
高分求助中
Comparative Anatomy of the Vertebrates 9th 3000
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 820
England and the Discovery of America, 1481-1620 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3571929
求助须知:如何正确求助?哪些是违规求助? 3142327
关于积分的说明 9446826
捐赠科研通 2843700
什么是DOI,文献DOI怎么找? 1563001
邀请新用户注册赠送积分活动 731530
科研通“疑难数据库(出版商)”最低求助积分说明 718557