亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

High-Performance Scaphoid Fracture Recognition via Effectiveness Assessment of Artificial Neural Networks

人工智能 卷积神经网络 计算机科学 学习迁移 模式识别(心理学) 人工神经网络 接收机工作特性 深度学习 机器学习
作者
Yu-Cheng Tung,Ja-Hwung Su,Yi-Wen Liao,Ching-Di Chang,Yu‐Fan Cheng,Wan-Ching Chang,Bohong Chen
出处
期刊:Applied sciences [MDPI AG]
卷期号:11 (18): 8485-8485 被引量:7
标识
DOI:10.3390/app11188485
摘要

Image recognition through the use of deep learning (DL) techniques has recently become a hot topic in many fields. Especially for bioimage informatics, DL-based image recognition has been successfully used in several applications, such as cancer and fracture detection. However, few previous studies have focused on detecting scaphoid fractures, and the related effectiveness is also not significant. Aimed at this issue, in this paper, we present a two-stage method for scaphoid fracture recognition by conducting an effectiveness analysis of numerous state-of-the-art artificial neural networks. In the first stage, the scaphoid bone is extracted from the radiograph using object detection techniques. Based on the object extracted, several convolutional neural networks (CNNs), with or without transfer learning, are utilized to recognize the segmented object. Finally, the analytical details on a real data set are given, in terms of various evaluation metrics, including sensitivity, specificity, precision, F1-score, area under the receiver operating curve (AUC), kappa, and accuracy. The experimental results reveal that the CNNs with transfer learning are more effective than those without transfer learning. Moreover, DenseNet201 and ResNet101 are found to be more promising than the other methods, on average. According to the experimental results, DenseNet201 and ResNet101 can be recommended as considerable solutions for scaphoid fracture detection within a bioimage diagnostic system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙橙完成签到,获得积分10
刚刚
千羽飞完成签到,获得积分10
3秒前
15秒前
19秒前
21秒前
23秒前
Shaangueuropa发布了新的文献求助30
24秒前
飞翔的发布了新的文献求助10
27秒前
隐形曼青应助江上烟采纳,获得10
33秒前
Shaangueuropa完成签到,获得积分10
35秒前
Billy应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
酸奶应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
40秒前
47秒前
52秒前
江上烟发布了新的文献求助10
54秒前
谨慎外套完成签到,获得积分20
59秒前
江上烟完成签到,获得积分10
1分钟前
我要当科研大佬完成签到,获得积分20
1分钟前
共享精神应助填充物采纳,获得10
1分钟前
1分钟前
1分钟前
不安毛豆发布了新的文献求助10
1分钟前
1分钟前
小尾巴发布了新的文献求助10
1分钟前
慕青应助不安毛豆采纳,获得10
1分钟前
今后应助wy采纳,获得10
1分钟前
噗哈哈完成签到 ,获得积分10
1分钟前
1分钟前
小星星完成签到 ,获得积分10
1分钟前
Ghiocel完成签到,获得积分10
1分钟前
qianqian完成签到,获得积分10
2分钟前
sailingluwl完成签到,获得积分10
2分钟前
2分钟前
2分钟前
飞翔的发布了新的文献求助10
2分钟前
Billy应助科研通管家采纳,获得10
2分钟前
CipherSage应助科研通管家采纳,获得10
2分钟前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Free Will in the Flesh 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3081558
求助须知:如何正确求助?哪些是违规求助? 2734319
关于积分的说明 7532547
捐赠科研通 2383865
什么是DOI,文献DOI怎么找? 1264044
科研通“疑难数据库(出版商)”最低求助积分说明 612493
版权声明 597577