High-Performance Scaphoid Fracture Recognition via Effectiveness Assessment of Artificial Neural Networks

人工智能 卷积神经网络 计算机科学 学习迁移 模式识别(心理学) 人工神经网络 接收机工作特性 深度学习 机器学习
作者
Yu-Cheng Tung,Ja-Hwung Su,Yi-Wen Liao,Ching-Di Chang,Yu‐Fan Cheng,Wan-Ching Chang,Bohong Chen
出处
期刊:Applied sciences [MDPI AG]
卷期号:11 (18): 8485-8485 被引量:7
标识
DOI:10.3390/app11188485
摘要

Image recognition through the use of deep learning (DL) techniques has recently become a hot topic in many fields. Especially for bioimage informatics, DL-based image recognition has been successfully used in several applications, such as cancer and fracture detection. However, few previous studies have focused on detecting scaphoid fractures, and the related effectiveness is also not significant. Aimed at this issue, in this paper, we present a two-stage method for scaphoid fracture recognition by conducting an effectiveness analysis of numerous state-of-the-art artificial neural networks. In the first stage, the scaphoid bone is extracted from the radiograph using object detection techniques. Based on the object extracted, several convolutional neural networks (CNNs), with or without transfer learning, are utilized to recognize the segmented object. Finally, the analytical details on a real data set are given, in terms of various evaluation metrics, including sensitivity, specificity, precision, F1-score, area under the receiver operating curve (AUC), kappa, and accuracy. The experimental results reveal that the CNNs with transfer learning are more effective than those without transfer learning. Moreover, DenseNet201 and ResNet101 are found to be more promising than the other methods, on average. According to the experimental results, DenseNet201 and ResNet101 can be recommended as considerable solutions for scaphoid fracture detection within a bioimage diagnostic system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
整齐百褶裙完成签到 ,获得积分10
6秒前
008完成签到 ,获得积分10
11秒前
朴素的雨筠完成签到,获得积分10
13秒前
确幸完成签到,获得积分10
14秒前
fiell完成签到,获得积分10
14秒前
英俊的铭应助科研通管家采纳,获得10
15秒前
15秒前
冯博伦完成签到,获得积分10
15秒前
乐乐应助科研通管家采纳,获得10
15秒前
15秒前
赘婿应助科研通管家采纳,获得10
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
16秒前
Triumph完成签到,获得积分10
16秒前
18秒前
能力不足的思想自由人完成签到 ,获得积分10
19秒前
28秒前
啦啦啦发布了新的文献求助10
34秒前
白夜完成签到 ,获得积分10
38秒前
周二完成签到 ,获得积分10
39秒前
白衣修身完成签到,获得积分10
40秒前
Wsyyy完成签到 ,获得积分10
42秒前
领导范儿应助啦啦啦采纳,获得10
43秒前
dgq_81完成签到,获得积分10
46秒前
Gino完成签到,获得积分0
49秒前
跳跃的鹏飞完成签到 ,获得积分10
50秒前
自由的中蓝完成签到 ,获得积分10
50秒前
WANGs完成签到 ,获得积分10
53秒前
一直成长完成签到,获得积分10
53秒前
何果果完成签到,获得积分10
53秒前
56秒前
zh完成签到 ,获得积分10
56秒前
zhaoyu完成签到 ,获得积分10
1分钟前
1分钟前
luoziwuhui完成签到,获得积分10
1分钟前
xiaoguang li完成签到,获得积分0
1分钟前
马大翔应助摆渡人采纳,获得10
1分钟前
1分钟前
飘逸踏歌完成签到,获得积分10
1分钟前
YANG完成签到 ,获得积分10
1分钟前
高分求助中
Effect of reactor temperature on FCC yield 1500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
Production Logging: Theoretical and Interpretive Elements 555
Mesopotamian Divination Texts: Conversing with the Gods 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3278303
求助须知:如何正确求助?哪些是违规求助? 2916837
关于积分的说明 8383273
捐赠科研通 2587529
什么是DOI,文献DOI怎么找? 1409671
科研通“疑难数据库(出版商)”最低求助积分说明 657402
邀请新用户注册赠送积分活动 638474