Remote Sensing Image Scene Classification Based on Global–Local Dual-Branch Structure Model

计算机科学 判别式 人工智能 卷积神经网络 对偶(语法数字) 图像(数学) 模式识别(心理学) 遥感 骨干网 计算机视觉 地理 电信 艺术 文学类
作者
Kejie Xu,Hong Huang,Peifang Deng
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:19: 1-5 被引量:16
标识
DOI:10.1109/lgrs.2021.3075712
摘要

Scene classification of high-resolution images is an active research topic in the remote sensing community. Although convolutional neural network (CNN)-based methods have obtained good performance, large-scale changes of ground objects in complex scenes restrict the further improvement of classification accuracy. In this letter, a global–local dual-branch structure (GLDBS) is designed to explore discriminative features of the original images and the crucial areas, and the strategy of decision-level fusion is applied for performance improvement. To discover the crucial area of the original image, the energy map generated by CNNs is transformed to the binary image, and the coordinates of the maximally connected region can be obtained. Among them, two shallow CNNs, ResNet18 and ResNet34, are selected as the backbone to construct a dual-branch network, and a joint loss is designed to optimize the whole model. In the GLDBS, the two streams employ the same structure (ResNet18-ResNet34) as the backbone, while the parameters are not shared. Experimental results on the aerial image data set (AID) and NWPU-RESISC45 datasets prove that the proposed GLDBS method achieves remarkable classification performance compared with some state-of-the-art (SOTA) methods. The highest overall accuracies (OAs) on the AID and NWPU-RESISC45 datasets are 97.01% and 94.46%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助昏睡的雨寒采纳,获得10
9秒前
potato_bel完成签到,获得积分10
10秒前
贝贝完成签到,获得积分10
10秒前
葶ting完成签到 ,获得积分10
14秒前
14秒前
传奇3应助如泣草芥采纳,获得10
16秒前
Droven完成签到 ,获得积分10
16秒前
Sophiaaa发布了新的文献求助10
18秒前
19秒前
华仔应助小田睡不醒采纳,获得10
21秒前
化学位移值完成签到 ,获得积分10
21秒前
22秒前
23秒前
豆子完成签到,获得积分10
23秒前
英俊的铭应助Sophiaaa采纳,获得10
24秒前
25秒前
积极的未来完成签到,获得积分10
26秒前
27秒前
123y完成签到,获得积分10
27秒前
30秒前
科研通AI2S应助susu采纳,获得10
32秒前
32秒前
32秒前
畅快的胡萝卜完成签到,获得积分10
32秒前
32秒前
共享精神应助炒栗子采纳,获得10
33秒前
幼忢应助炒栗子采纳,获得10
33秒前
一大碗肥肉汁完成签到,获得积分20
36秒前
36秒前
37秒前
38秒前
38秒前
wilisher发布了新的文献求助10
39秒前
魔幻绮兰发布了新的文献求助10
40秒前
40秒前
Jocd完成签到 ,获得积分10
42秒前
玉yu发布了新的文献求助10
44秒前
45秒前
zhangsir发布了新的文献求助20
46秒前
49秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140361
求助须知:如何正确求助?哪些是违规求助? 2791107
关于积分的说明 7797976
捐赠科研通 2447576
什么是DOI,文献DOI怎么找? 1301949
科研通“疑难数据库(出版商)”最低求助积分说明 626354
版权声明 601194