Multi-rate Kalman filtering for the data fusion of displacement and acceleration response measurements in dynamic system monitoring

扩展卡尔曼滤波器 加速度 控制理论(社会学) 信号(编程语言) 振动 流离失所(心理学) 滤波器(信号处理)
作者
Andrew W. Smyth,Meiliang Wu
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:21 (2): 706-723 被引量:226
标识
DOI:10.1016/j.ymssp.2006.03.005
摘要

Many damage detection and system identification approaches benefit from the availability of both acceleration and displacement measurements. This is particularly true in the case of suspected non-linear behavior and permanent deformations. In civil and mechanical structural modeling accelerometers are most often used, however displacement sensors, such as non-contact optical techniques as well as GPS-based methods for civil structures are becoming more common. It is suggested, where possible, to exploit the inherent redundancy in the sensor information and combine the collocated acceleration and displacement measurements in a manner which yields highly accurate motion data. This circumvents problematic integration of accelerometer data that causes low-frequency noise amplification, and potentially more problematic differentiation of displacement measurements which amplify high-frequency noise. Another common feature of displacement-based sensing is that the high-frequency resolution is limited, and often relatively low sampling rates are used. In contrast, accelerometers are often more accurate for higher frequencies and higher sampling rates are often available. The fusion of these two data types must, therefore, combine data sampled at different frequencies. A multi-rate Kalman filtering approach is proposed to solve this problem. In addition, a smoothing step is introduced to obtain improved accuracy in the displacement estimate when it is sampled at lower rates than the corresponding acceleration measurement. Through trials with simulated data the procedure's effectiveness is shown to be quite robust at a variety of noise levels and relative sample rates for this practical problem.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
wwwjqw发布了新的文献求助10
2秒前
3秒前
Clove完成签到 ,获得积分10
3秒前
3秒前
cora完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
CipherSage应助祖白易采纳,获得10
5秒前
5秒前
慕容铭完成签到,获得积分10
5秒前
6秒前
hl发布了新的文献求助20
7秒前
Singularity应助刻苦问凝采纳,获得10
9秒前
leihai发布了新的文献求助10
10秒前
在水一方应助沉默安波采纳,获得10
10秒前
到家了发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
12秒前
15秒前
宁123完成签到,获得积分10
15秒前
15秒前
不配.应助King采纳,获得20
16秒前
Emma发布了新的文献求助10
16秒前
16秒前
16秒前
柠檬完成签到,获得积分10
17秒前
钱兵完成签到,获得积分10
17秒前
负责吃饭完成签到,获得积分10
17秒前
茹果完成签到,获得积分10
18秒前
深情安青应助Lllll采纳,获得10
18秒前
18秒前
18秒前
18秒前
zhunzhunzhun完成签到,获得积分10
19秒前
20秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
有EBL数据库的大佬进 Matrix Mathematics 500
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 遗传学 化学工程 基因 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3411077
求助须知:如何正确求助?哪些是违规求助? 3014545
关于积分的说明 8864373
捐赠科研通 2702074
什么是DOI,文献DOI怎么找? 1481422
科研通“疑难数据库(出版商)”最低求助积分说明 684839
邀请新用户注册赠送积分活动 679351