清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Hierarchical graph representation learning for the prediction of drug-target binding affinity

计算机科学 推论 图形 代表(政治) 水准点(测量) 人工智能 药物靶点 机器学习 相似性(几何) 药物发现 数据挖掘 理论计算机科学 化学 大地测量学 图像(数学) 政治 法学 地理 生物化学 政治学
作者
Zhaoyang Chu,Feng Huang,Haitao Fu,Quan Yuan,Xionghui Zhou,Shichao Liu,Wen Zhang
出处
期刊:Information Sciences [Elsevier BV]
卷期号:613: 507-523 被引量:43
标识
DOI:10.1016/j.ins.2022.09.043
摘要

Computationally predicting drug-target binding affinity (DTA) has attracted increasing attention due to its benefit for accelerating drug discovery. Currently, numerous deep learning-based prediction models have been proposed, often with a biencoder architecture that commonly focuses on how to extract expressive representations for drugs and targets but overlooks modeling explicit drug-target interactions. However, known DTA can provide underlying knowledge about how the drugs interact with targets that is beneficial for predictive accuracy. In this paper, we propose a novel hierarchical graph representation learning model for DTA prediction, named HGRL-DTA. The main contribution of our model is to establish a hierarchical graph learning architecture to integrate the coarse- and fine-level information from an affinity graph and drug/target molecule graphs, respectively, in a well-designed coarse-to-fine manner. In addition, we design a similarity-based representation inference method to infer coarse-level information when it is unavailable for new drugs or targets under the cold start scenario. Comprehensive experimental results under four scenarios across two benchmark datasets indicate that HGRL-DTA outperforms the state-of-the-art models in almost all cases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大医仁心完成签到 ,获得积分10
4秒前
科研通AI5应助科研通管家采纳,获得10
13秒前
13秒前
张张发布了新的文献求助10
40秒前
小新小新完成签到 ,获得积分10
42秒前
量子星尘发布了新的文献求助10
46秒前
CipherSage应助张张采纳,获得10
56秒前
风中不斜完成签到 ,获得积分20
1分钟前
1分钟前
1分钟前
oldcat96发布了新的文献求助10
1分钟前
所所应助oldcat96采纳,获得10
1分钟前
安琪琪完成签到 ,获得积分10
1分钟前
努力退休小博士完成签到 ,获得积分10
2分钟前
2分钟前
心想柿橙发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
跳跃的鹏飞完成签到 ,获得积分10
2分钟前
心想柿橙完成签到,获得积分10
2分钟前
科研通AI2S应助风中不斜采纳,获得10
2分钟前
婼汐完成签到 ,获得积分10
3分钟前
3分钟前
甜蜜发带完成签到 ,获得积分0
3分钟前
3分钟前
量子星尘发布了新的文献求助10
4分钟前
简因完成签到 ,获得积分10
4分钟前
5分钟前
Becky完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
桥西小河完成签到 ,获得积分10
5分钟前
胡可完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
紫熊完成签到,获得积分10
7分钟前
7分钟前
111完成签到 ,获得积分10
7分钟前
量子星尘发布了新的文献求助10
7分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008397
求助须知:如何正确求助?哪些是违规求助? 3548131
关于积分的说明 11298711
捐赠科研通 3282900
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885975
科研通“疑难数据库(出版商)”最低求助积分说明 811209