Novel Neural Network for Predicting the Vibration Response of Mistuned Bladed Disks

失谐 人工神经网络 振动 联轴节(管道) 有限元法 过程(计算) 声学 控制理论(社会学) 计算机科学 工程类 结构工程 物理 人工智能 机械工程 控制(管理) 操作系统
作者
Daosen Liang,Jianyao Yao,Zichu Jia,Zhifu Cao,Xuyang Liu,Xuzhen Jing
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:61 (1): 391-405 被引量:7
标识
DOI:10.2514/1.j062215
摘要

Inevitable mistuning in cyclic bladed disk structures would cause vibration amplification phenomena that seriously reduce the reliability of the bladed disk. The ability to accurately and quickly predict the dynamic responses is critical to investigating the dynamic behavior of the mistuned system. However, it is still challenging because the mistuned responses are extremely sensitive to the random mistuning parameters. In this work, a novel mistuned system deep neural network model (MS-DNN) is presented to predict the dynamic responses of mistuned bladed disks through the mistuning parameters for both the lumped parameter model and the large-scale finite element (FE) model, which decouples the vibration equations of the mistuned system and uses a neural network to replace the coupling process. MS-DNN is divided into two levels, namely, the blade and the disk. The blade-level neural networks are used for forward and backward propagation of mistuning parameters in the different blades, and the disk-level neural network is used to replace the physical coupling process in the disk of multiple mistuning parameters from individual blades, with data transmission between the neural networks via blade–disk boundary nodes. The expected physical response of the blade tip is predicted through MS-DNN. All neural networks in MS-DNN show high prediction accuracy on both training sets and unknown test sets. For the FE model of the industrial bladed disk, the effect of the number of boundary nodes selected as the data interface between neural networks on the prediction accuracy is also investigated. The results show that, for unknown test data, the predicted response has an [Formula: see text] value of 0.998 versus the actual response with an amplification factor error of less than 0.388%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小恐龙发布了新的文献求助10
1秒前
VDC应助大灯泡采纳,获得30
1秒前
1秒前
Twonej应助Wenjian7761采纳,获得30
2秒前
浮游应助123采纳,获得10
4秒前
一支卓发布了新的文献求助10
4秒前
华仔应助yun采纳,获得10
4秒前
cyskdsn完成签到 ,获得积分10
5秒前
勤H完成签到,获得积分10
7秒前
天涯明月刀完成签到,获得积分10
7秒前
星星完成签到,获得积分10
9秒前
9秒前
KONG完成签到,获得积分10
10秒前
11秒前
静静在学呢完成签到,获得积分10
12秒前
兆兆发布了新的文献求助10
12秒前
13秒前
浮游应助一支卓采纳,获得10
13秒前
受伤听露完成签到 ,获得积分10
13秒前
慕青应助怕黑剑封采纳,获得10
14秒前
14秒前
德玛西亚发布了新的文献求助10
14秒前
HHW发布了新的文献求助10
14秒前
奋斗思烟完成签到 ,获得积分10
15秒前
自由的微风完成签到,获得积分10
17秒前
linkman发布了新的文献求助200
17秒前
木子完成签到,获得积分10
18秒前
小房子完成签到,获得积分10
20秒前
Nolan完成签到,获得积分10
20秒前
贪玩板栗发布了新的文献求助10
20秒前
22秒前
23秒前
甜甜的平蓝完成签到,获得积分10
24秒前
25秒前
25秒前
潇洒飞丹完成签到,获得积分10
26秒前
28秒前
29秒前
29秒前
Baywreath完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637867
求助须知:如何正确求助?哪些是违规求助? 4744182
关于积分的说明 15000410
捐赠科研通 4796064
什么是DOI,文献DOI怎么找? 2562285
邀请新用户注册赠送积分活动 1521829
关于科研通互助平台的介绍 1481714