Novel Neural Network for Predicting the Vibration Response of Mistuned Bladed Disks

失谐 人工神经网络 振动 联轴节(管道) 有限元法 过程(计算) 声学 控制理论(社会学) 计算机科学 工程类 结构工程 物理 人工智能 机械工程 操作系统 控制(管理)
作者
Daosen Liang,Jianyao Yao,Zichu Jia,Zhifu Cao,Xuyang Liu,Xuzhen Jing
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:61 (1): 391-405 被引量:7
标识
DOI:10.2514/1.j062215
摘要

Inevitable mistuning in cyclic bladed disk structures would cause vibration amplification phenomena that seriously reduce the reliability of the bladed disk. The ability to accurately and quickly predict the dynamic responses is critical to investigating the dynamic behavior of the mistuned system. However, it is still challenging because the mistuned responses are extremely sensitive to the random mistuning parameters. In this work, a novel mistuned system deep neural network model (MS-DNN) is presented to predict the dynamic responses of mistuned bladed disks through the mistuning parameters for both the lumped parameter model and the large-scale finite element (FE) model, which decouples the vibration equations of the mistuned system and uses a neural network to replace the coupling process. MS-DNN is divided into two levels, namely, the blade and the disk. The blade-level neural networks are used for forward and backward propagation of mistuning parameters in the different blades, and the disk-level neural network is used to replace the physical coupling process in the disk of multiple mistuning parameters from individual blades, with data transmission between the neural networks via blade–disk boundary nodes. The expected physical response of the blade tip is predicted through MS-DNN. All neural networks in MS-DNN show high prediction accuracy on both training sets and unknown test sets. For the FE model of the industrial bladed disk, the effect of the number of boundary nodes selected as the data interface between neural networks on the prediction accuracy is also investigated. The results show that, for unknown test data, the predicted response has an [Formula: see text] value of 0.998 versus the actual response with an amplification factor error of less than 0.388%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汝桢完成签到,获得积分10
刚刚
刚刚
上上签完成签到,获得积分10
1秒前
1秒前
搜集达人应助感动又晴采纳,获得10
1秒前
清脆惜寒应助倚歌采纳,获得10
2秒前
june发布了新的文献求助10
2秒前
芬芬发布了新的文献求助10
2秒前
韧战发布了新的文献求助10
3秒前
4秒前
4秒前
4秒前
脑洞疼应助亓大大采纳,获得10
5秒前
大个应助snnnn采纳,获得10
6秒前
灰烬使者完成签到,获得积分20
7秒前
八格牙路完成签到,获得积分10
7秒前
7秒前
、、、发布了新的文献求助10
7秒前
岩追研发布了新的文献求助10
8秒前
跃May发布了新的文献求助10
9秒前
9秒前
fanny发布了新的文献求助30
9秒前
9秒前
10秒前
奋斗小蜜蜂完成签到,获得积分10
10秒前
11秒前
hqy完成签到,获得积分20
12秒前
领导范儿应助charm12采纳,获得10
12秒前
感动又晴完成签到,获得积分10
12秒前
13秒前
苦难诗社发布了新的文献求助10
13秒前
13秒前
yatou5651发布了新的文献求助10
14秒前
14秒前
许子健发布了新的文献求助10
15秒前
nini发布了新的文献求助10
15秒前
15秒前
开朗的山彤应助张阿童木采纳,获得10
15秒前
追寻依风发布了新的文献求助10
15秒前
隐形曼青应助雾昂采纳,获得10
15秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646