Novel Neural Network for Predicting the Vibration Response of Mistuned Bladed Disks

失谐 人工神经网络 振动 联轴节(管道) 有限元法 过程(计算) 声学 控制理论(社会学) 计算机科学 工程类 结构工程 物理 人工智能 机械工程 操作系统 控制(管理)
作者
Daosen Liang,Jianyao Yao,Zichu Jia,Zhifu Cao,Xuyang Liu,Xuzhen Jing
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:61 (1): 391-405 被引量:7
标识
DOI:10.2514/1.j062215
摘要

Inevitable mistuning in cyclic bladed disk structures would cause vibration amplification phenomena that seriously reduce the reliability of the bladed disk. The ability to accurately and quickly predict the dynamic responses is critical to investigating the dynamic behavior of the mistuned system. However, it is still challenging because the mistuned responses are extremely sensitive to the random mistuning parameters. In this work, a novel mistuned system deep neural network model (MS-DNN) is presented to predict the dynamic responses of mistuned bladed disks through the mistuning parameters for both the lumped parameter model and the large-scale finite element (FE) model, which decouples the vibration equations of the mistuned system and uses a neural network to replace the coupling process. MS-DNN is divided into two levels, namely, the blade and the disk. The blade-level neural networks are used for forward and backward propagation of mistuning parameters in the different blades, and the disk-level neural network is used to replace the physical coupling process in the disk of multiple mistuning parameters from individual blades, with data transmission between the neural networks via blade–disk boundary nodes. The expected physical response of the blade tip is predicted through MS-DNN. All neural networks in MS-DNN show high prediction accuracy on both training sets and unknown test sets. For the FE model of the industrial bladed disk, the effect of the number of boundary nodes selected as the data interface between neural networks on the prediction accuracy is also investigated. The results show that, for unknown test data, the predicted response has an [Formula: see text] value of 0.998 versus the actual response with an amplification factor error of less than 0.388%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rookie99完成签到,获得积分10
1秒前
asenda完成签到,获得积分0
1秒前
找不到文献好烦完成签到,获得积分10
2秒前
3秒前
3秒前
ll发布了新的文献求助10
3秒前
包容仙人掌完成签到,获得积分10
3秒前
4秒前
March完成签到,获得积分10
5秒前
111发布了新的文献求助10
5秒前
小潘完成签到,获得积分10
8秒前
su发布了新的文献求助10
8秒前
8秒前
9秒前
李健应助caohuijun采纳,获得10
9秒前
10秒前
ggyy发布了新的文献求助10
11秒前
善学以致用应助Sara采纳,获得10
12秒前
Lucien完成签到,获得积分10
12秒前
有热心愿意完成签到,获得积分10
12秒前
汉堡包应助222采纳,获得10
14秒前
我是笨蛋发布了新的文献求助10
15秒前
碧蓝的火龙果完成签到 ,获得积分10
16秒前
Estella完成签到,获得积分10
16秒前
sjr完成签到,获得积分10
16秒前
青mu完成签到,获得积分10
17秒前
顾矜应助西因采纳,获得10
17秒前
李健的小迷弟应助西因采纳,获得10
17秒前
ZAL完成签到,获得积分10
18秒前
lllllllll完成签到,获得积分10
18秒前
SciGPT应助su采纳,获得10
19秒前
多多完成签到,获得积分10
20秒前
宓e完成签到 ,获得积分20
21秒前
科目三应助Oscillator采纳,获得10
21秒前
25秒前
25秒前
圣泽同学完成签到,获得积分10
25秒前
111完成签到,获得积分10
26秒前
26秒前
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600851
求助须知:如何正确求助?哪些是违规求助? 4686434
关于积分的说明 14843458
捐赠科研通 4678360
什么是DOI,文献DOI怎么找? 2539004
邀请新用户注册赠送积分活动 1505954
关于科研通互助平台的介绍 1471241