Novel Neural Network for Predicting the Vibration Response of Mistuned Bladed Disks

失谐 人工神经网络 振动 联轴节(管道) 有限元法 过程(计算) 声学 控制理论(社会学) 计算机科学 工程类 结构工程 物理 人工智能 机械工程 操作系统 控制(管理)
作者
Daosen Liang,Jianyao Yao,Zichu Jia,Zhifu Cao,Xuyang Liu,Xuzhen Jing
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:61 (1): 391-405 被引量:7
标识
DOI:10.2514/1.j062215
摘要

Inevitable mistuning in cyclic bladed disk structures would cause vibration amplification phenomena that seriously reduce the reliability of the bladed disk. The ability to accurately and quickly predict the dynamic responses is critical to investigating the dynamic behavior of the mistuned system. However, it is still challenging because the mistuned responses are extremely sensitive to the random mistuning parameters. In this work, a novel mistuned system deep neural network model (MS-DNN) is presented to predict the dynamic responses of mistuned bladed disks through the mistuning parameters for both the lumped parameter model and the large-scale finite element (FE) model, which decouples the vibration equations of the mistuned system and uses a neural network to replace the coupling process. MS-DNN is divided into two levels, namely, the blade and the disk. The blade-level neural networks are used for forward and backward propagation of mistuning parameters in the different blades, and the disk-level neural network is used to replace the physical coupling process in the disk of multiple mistuning parameters from individual blades, with data transmission between the neural networks via blade–disk boundary nodes. The expected physical response of the blade tip is predicted through MS-DNN. All neural networks in MS-DNN show high prediction accuracy on both training sets and unknown test sets. For the FE model of the industrial bladed disk, the effect of the number of boundary nodes selected as the data interface between neural networks on the prediction accuracy is also investigated. The results show that, for unknown test data, the predicted response has an [Formula: see text] value of 0.998 versus the actual response with an amplification factor error of less than 0.388%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研小迷糊完成签到,获得积分10
刚刚
十六发布了新的文献求助10
刚刚
小甑发布了新的文献求助10
1秒前
大个应助半疯半癫采纳,获得30
1秒前
CodeCraft应助应天亦采纳,获得30
1秒前
1秒前
火星上藏鸟完成签到,获得积分10
1秒前
1秒前
wangxuan完成签到,获得积分10
2秒前
2秒前
Orange应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
ludong_0应助科研通管家采纳,获得10
3秒前
3秒前
缓慢如南应助科研通管家采纳,获得10
3秒前
缓慢如南应助科研通管家采纳,获得10
3秒前
汉堡包应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
ludong_0应助科研通管家采纳,获得10
3秒前
缓慢如南应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
3秒前
古往今来应助科研通管家采纳,获得20
4秒前
ding应助科研通管家采纳,获得50
4秒前
李健应助科研通管家采纳,获得30
4秒前
F503完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
哆啦豆豆关注了科研通微信公众号
4秒前
语青发布了新的文献求助10
5秒前
好好工作完成签到,获得积分20
5秒前
星星完成签到,获得积分10
6秒前
嘿嘿嘿发布了新的文献求助10
6秒前
小徐801完成签到,获得积分10
6秒前
吴向宽发布了新的文献求助10
6秒前
maz123456发布了新的文献求助10
6秒前
6秒前
CodeCraft应助乐观若烟采纳,获得30
6秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986618
求助须知:如何正确求助?哪些是违规求助? 3529071
关于积分的说明 11243225
捐赠科研通 3267556
什么是DOI,文献DOI怎么找? 1803784
邀请新用户注册赠送积分活动 881185
科研通“疑难数据库(出版商)”最低求助积分说明 808582