Novel Neural Network for Predicting the Vibration Response of Mistuned Bladed Disks

失谐 人工神经网络 振动 联轴节(管道) 有限元法 过程(计算) 声学 控制理论(社会学) 计算机科学 工程类 结构工程 物理 人工智能 机械工程 操作系统 控制(管理)
作者
Daosen Liang,Jianyao Yao,Zichu Jia,Zhifu Cao,Xuyang Liu,Xuzhen Jing
出处
期刊:AIAA Journal [American Institute of Aeronautics and Astronautics]
卷期号:61 (1): 391-405 被引量:7
标识
DOI:10.2514/1.j062215
摘要

Inevitable mistuning in cyclic bladed disk structures would cause vibration amplification phenomena that seriously reduce the reliability of the bladed disk. The ability to accurately and quickly predict the dynamic responses is critical to investigating the dynamic behavior of the mistuned system. However, it is still challenging because the mistuned responses are extremely sensitive to the random mistuning parameters. In this work, a novel mistuned system deep neural network model (MS-DNN) is presented to predict the dynamic responses of mistuned bladed disks through the mistuning parameters for both the lumped parameter model and the large-scale finite element (FE) model, which decouples the vibration equations of the mistuned system and uses a neural network to replace the coupling process. MS-DNN is divided into two levels, namely, the blade and the disk. The blade-level neural networks are used for forward and backward propagation of mistuning parameters in the different blades, and the disk-level neural network is used to replace the physical coupling process in the disk of multiple mistuning parameters from individual blades, with data transmission between the neural networks via blade–disk boundary nodes. The expected physical response of the blade tip is predicted through MS-DNN. All neural networks in MS-DNN show high prediction accuracy on both training sets and unknown test sets. For the FE model of the industrial bladed disk, the effect of the number of boundary nodes selected as the data interface between neural networks on the prediction accuracy is also investigated. The results show that, for unknown test data, the predicted response has an [Formula: see text] value of 0.998 versus the actual response with an amplification factor error of less than 0.388%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LD完成签到 ,获得积分10
1秒前
liuying发布了新的文献求助10
1秒前
1秒前
英俊的铭应助搞怪人雄采纳,获得10
1秒前
萌酱发布了新的文献求助10
2秒前
爱科研完成签到,获得积分10
2秒前
Jasper应助橘子海采纳,获得10
2秒前
yuyumi发布了新的文献求助10
3秒前
3秒前
华仔应助磷钼酸奎琳采纳,获得10
4秒前
杨杨应助pooh采纳,获得10
4秒前
开朗的草莓应助冷酷成威采纳,获得10
5秒前
开朗的草莓应助冷酷成威采纳,获得10
5秒前
xixi完成签到,获得积分10
5秒前
逐梦发布了新的文献求助10
5秒前
gxy发布了新的文献求助10
6秒前
6秒前
6秒前
杏仁核发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
愚者先生发布了新的文献求助10
7秒前
NexusExplorer应助Jan采纳,获得10
7秒前
上官卿完成签到,获得积分20
8秒前
9秒前
萌酱完成签到,获得积分10
9秒前
怡然缘分发布了新的文献求助10
10秒前
Akim应助冯琳栋采纳,获得10
11秒前
拉拉发布了新的文献求助10
11秒前
13秒前
13秒前
深情安青应助美满的凝丝采纳,获得10
13秒前
哇塞的完成签到,获得积分10
13秒前
搞怪人雄发布了新的文献求助10
14秒前
万能图书馆应助晚晚采纳,获得10
14秒前
杨程羽完成签到 ,获得积分10
14秒前
文城完成签到,获得积分10
15秒前
15秒前
15秒前
hdh发布了新的文献求助10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5762211
求助须知:如何正确求助?哪些是违规求助? 5534714
关于积分的说明 15402511
捐赠科研通 4898495
什么是DOI,文献DOI怎么找? 2634891
邀请新用户注册赠送积分活动 1583051
关于科研通互助平台的介绍 1538203