Prediction of the Future State of Pedestrians While Jaywalking Under Non-Lane-Based Heterogeneous Traffic Conditions

阿达布思 Boosting(机器学习) 随机森林 行人 计算机科学 预测建模 人工智能 机器学习 梯度升压 集成学习 模拟 支持向量机 工程类 运输工程
作者
Kaliprasana Muduli,Indrajit Ghosh
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2677 (10): 554-571 被引量:7
标识
DOI:10.1177/03611981231161619
摘要

This study proposes a novel framework to predict jaywalkers' future state in non-lane-based heterogeneous traffic conditions by combining the effects of the surrounding dynamics with jaywalkers' poses. Different variables, such as the pedestrian pose, walking speed, location in the road environment, count and direction of approaching traffic, speed and type of closest approaching vehicle, and so forth, are used as input variables. The dataset for this study consists of 47,588 samples gathered by analyzing 1753 jaywalkers under non-lane-based heterogeneous traffic situations. Keypoint detection on the pedestrian body is made using MediaPipe. YOLOv4 and DeepSORT are used to detect and track road users to get trajectory data. Training and testing datasets are prepared for different prediction horizons to test the proposed models’ applicability for roads of varying design speeds. Four machine learning models based on ensemble techniques, namely random forest (RF), adaptive boosting (AdaBoost), gradient boosting, and extreme gradient boosting, are trained and tested for different prediction horizons from 0.5 to 4 s. Up to the prediction horizon of 1 s, all models performed equally well with Area under the ROC curve (AUC) values above 0.95. At higher prediction horizons, the RF is found to outperform the other models. All models, except AdaBoost, maintained an AUC value of greater than 0.9 when predicting future states up to a maximum of 2.5 s. The proposed model performs well for both short-term and long-term predictions by combining the effect of surrounding dynamics with pedestrian stance and speed. The outcomes can be utilized to assist infrastructure-to-vehicle connectivity in empowering vehicles to navigate through jaywalkers safely, enhancing pedestrian safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
薛人英完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
vv的平行宇宙完成签到,获得积分10
3秒前
机密塔完成签到,获得积分10
3秒前
曾小莹完成签到,获得积分10
3秒前
3秒前
4秒前
hua完成签到,获得积分10
4秒前
斯文冷亦完成签到 ,获得积分10
5秒前
努力退休小博士完成签到 ,获得积分10
5秒前
popo完成签到,获得积分10
5秒前
changyongcheng完成签到 ,获得积分10
5秒前
hhhhhhan616完成签到,获得积分10
6秒前
Jj发布了新的文献求助10
6秒前
6秒前
一头小眠羊完成签到,获得积分10
7秒前
7秒前
轻松绮兰发布了新的文献求助10
7秒前
娇娇完成签到,获得积分10
7秒前
8秒前
su发布了新的文献求助10
8秒前
啵妞完成签到 ,获得积分10
8秒前
54489完成签到,获得积分10
9秒前
鲨鱼辣椒完成签到,获得积分10
9秒前
千空发布了新的文献求助10
9秒前
从别后忆相逢完成签到 ,获得积分10
10秒前
SYLH应助xzy998采纳,获得20
10秒前
afar完成签到 ,获得积分10
11秒前
王思鲁完成签到,获得积分10
11秒前
Maxpan完成签到,获得积分10
11秒前
Ddddddd关注了科研通微信公众号
11秒前
12秒前
12秒前
A0发布了新的文献求助10
13秒前
HN_litchi_King完成签到,获得积分10
13秒前
13秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016068
求助须知:如何正确求助?哪些是违规求助? 3556043
关于积分的说明 11319836
捐赠科研通 3289063
什么是DOI,文献DOI怎么找? 1812373
邀请新用户注册赠送积分活动 887923
科研通“疑难数据库(出版商)”最低求助积分说明 812044