Prediction of the Future State of Pedestrians While Jaywalking Under Non-Lane-Based Heterogeneous Traffic Conditions

阿达布思 Boosting(机器学习) 随机森林 行人 计算机科学 预测建模 人工智能 机器学习 梯度升压 集成学习 模拟 支持向量机 工程类 运输工程
作者
Kaliprasana Muduli,Indrajit Ghosh
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2677 (10): 554-571 被引量:7
标识
DOI:10.1177/03611981231161619
摘要

This study proposes a novel framework to predict jaywalkers' future state in non-lane-based heterogeneous traffic conditions by combining the effects of the surrounding dynamics with jaywalkers' poses. Different variables, such as the pedestrian pose, walking speed, location in the road environment, count and direction of approaching traffic, speed and type of closest approaching vehicle, and so forth, are used as input variables. The dataset for this study consists of 47,588 samples gathered by analyzing 1753 jaywalkers under non-lane-based heterogeneous traffic situations. Keypoint detection on the pedestrian body is made using MediaPipe. YOLOv4 and DeepSORT are used to detect and track road users to get trajectory data. Training and testing datasets are prepared for different prediction horizons to test the proposed models’ applicability for roads of varying design speeds. Four machine learning models based on ensemble techniques, namely random forest (RF), adaptive boosting (AdaBoost), gradient boosting, and extreme gradient boosting, are trained and tested for different prediction horizons from 0.5 to 4 s. Up to the prediction horizon of 1 s, all models performed equally well with Area under the ROC curve (AUC) values above 0.95. At higher prediction horizons, the RF is found to outperform the other models. All models, except AdaBoost, maintained an AUC value of greater than 0.9 when predicting future states up to a maximum of 2.5 s. The proposed model performs well for both short-term and long-term predictions by combining the effect of surrounding dynamics with pedestrian stance and speed. The outcomes can be utilized to assist infrastructure-to-vehicle connectivity in empowering vehicles to navigate through jaywalkers safely, enhancing pedestrian safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Hello应助安若剑采纳,获得10
1秒前
八宝粥完成签到,获得积分10
2秒前
黄训清发布了新的文献求助10
2秒前
连仁兄发布了新的文献求助10
2秒前
sxwen发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
3秒前
英俊的铭应助Ono采纳,获得10
4秒前
充电宝应助哆啦A梦的梦采纳,获得10
4秒前
5秒前
5秒前
5秒前
找文献完成签到,获得积分10
6秒前
6秒前
6秒前
万能图书馆应助sci_zt采纳,获得10
7秒前
科研通AI6应助典雅的俊驰采纳,获得10
7秒前
桥豆麻袋发布了新的文献求助10
7秒前
8秒前
8秒前
酷波er应助StrawCc采纳,获得10
8秒前
芽芽完成签到,获得积分10
8秒前
温暖白梅完成签到,获得积分10
8秒前
8秒前
爱坤坤发布了新的文献求助20
9秒前
Gotyababy发布了新的文献求助10
10秒前
ddd完成签到,获得积分20
10秒前
10秒前
哈哈发布了新的文献求助10
10秒前
SciGPT应助积极的翠彤采纳,获得10
10秒前
tonyfountain发布了新的文献求助10
11秒前
11秒前
小橘猫发布了新的文献求助10
11秒前
科研通AI6应助hen23333采纳,获得10
12秒前
科目三应助fanfan3采纳,获得10
12秒前
烟花应助灵波采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604366
求助须知:如何正确求助?哪些是违规求助? 4012767
关于积分的说明 12424858
捐赠科研通 3693390
什么是DOI,文献DOI怎么找? 2036274
邀请新用户注册赠送积分活动 1069311
科研通“疑难数据库(出版商)”最低求助积分说明 953835