Prediction of the Future State of Pedestrians While Jaywalking Under Non-Lane-Based Heterogeneous Traffic Conditions

阿达布思 Boosting(机器学习) 随机森林 行人 计算机科学 预测建模 人工智能 机器学习 梯度升压 集成学习 模拟 支持向量机 工程类 运输工程
作者
Kaliprasana Muduli,Indrajit Ghosh
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2677 (10): 554-571 被引量:7
标识
DOI:10.1177/03611981231161619
摘要

This study proposes a novel framework to predict jaywalkers' future state in non-lane-based heterogeneous traffic conditions by combining the effects of the surrounding dynamics with jaywalkers' poses. Different variables, such as the pedestrian pose, walking speed, location in the road environment, count and direction of approaching traffic, speed and type of closest approaching vehicle, and so forth, are used as input variables. The dataset for this study consists of 47,588 samples gathered by analyzing 1753 jaywalkers under non-lane-based heterogeneous traffic situations. Keypoint detection on the pedestrian body is made using MediaPipe. YOLOv4 and DeepSORT are used to detect and track road users to get trajectory data. Training and testing datasets are prepared for different prediction horizons to test the proposed models’ applicability for roads of varying design speeds. Four machine learning models based on ensemble techniques, namely random forest (RF), adaptive boosting (AdaBoost), gradient boosting, and extreme gradient boosting, are trained and tested for different prediction horizons from 0.5 to 4 s. Up to the prediction horizon of 1 s, all models performed equally well with Area under the ROC curve (AUC) values above 0.95. At higher prediction horizons, the RF is found to outperform the other models. All models, except AdaBoost, maintained an AUC value of greater than 0.9 when predicting future states up to a maximum of 2.5 s. The proposed model performs well for both short-term and long-term predictions by combining the effect of surrounding dynamics with pedestrian stance and speed. The outcomes can be utilized to assist infrastructure-to-vehicle connectivity in empowering vehicles to navigate through jaywalkers safely, enhancing pedestrian safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助JoJo采纳,获得10
1秒前
自然棒球完成签到,获得积分10
1秒前
sucre完成签到,获得积分20
1秒前
小贝发布了新的文献求助10
2秒前
神勇的荟完成签到 ,获得积分10
2秒前
牛牛完成签到,获得积分10
3秒前
洛城l发布了新的文献求助10
3秒前
3秒前
深情安青应助123采纳,获得10
4秒前
zyl发布了新的文献求助10
4秒前
要努力鸭发布了新的文献求助10
5秒前
6秒前
Mcharleen发布了新的文献求助20
6秒前
8秒前
9秒前
北过居庸发布了新的文献求助30
9秒前
王淑慧完成签到 ,获得积分10
9秒前
桃子汽水发布了新的文献求助10
9秒前
9秒前
Russia完成签到 ,获得积分10
9秒前
TXQ完成签到,获得积分10
9秒前
10秒前
Elena完成签到 ,获得积分10
10秒前
shaft完成签到,获得积分10
10秒前
卿晓晓完成签到 ,获得积分10
11秒前
量子星尘发布了新的文献求助10
11秒前
吴祎鸽完成签到,获得积分10
12秒前
茶米发布了新的文献求助10
12秒前
boblau完成签到 ,获得积分10
12秒前
Akim应助薛定谔的猫采纳,获得10
12秒前
12秒前
快乐小菜瓜完成签到 ,获得积分10
12秒前
12秒前
Aluhaer应助yj采纳,获得10
12秒前
自分目覚发布了新的文献求助10
13秒前
Starry完成签到,获得积分20
13秒前
zhou完成签到 ,获得积分10
13秒前
明明完成签到,获得积分10
13秒前
知蜜10完成签到,获得积分10
14秒前
明亮夏旋完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
Vertebrate Palaeontology, 5th Edition 480
Aircraft Engine Design, Third Edition 308
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5155371
求助须知:如何正确求助?哪些是违规求助? 4351063
关于积分的说明 13547192
捐赠科研通 4193867
什么是DOI,文献DOI怎么找? 2300162
邀请新用户注册赠送积分活动 1300091
关于科研通互助平台的介绍 1245111