Prediction of the Future State of Pedestrians While Jaywalking Under Non-Lane-Based Heterogeneous Traffic Conditions

阿达布思 Boosting(机器学习) 随机森林 行人 计算机科学 预测建模 人工智能 机器学习 梯度升压 集成学习 模拟 支持向量机 工程类 运输工程
作者
Kaliprasana Muduli,Indrajit Ghosh
出处
期刊:Transportation Research Record [SAGE Publishing]
卷期号:2677 (10): 554-571 被引量:7
标识
DOI:10.1177/03611981231161619
摘要

This study proposes a novel framework to predict jaywalkers' future state in non-lane-based heterogeneous traffic conditions by combining the effects of the surrounding dynamics with jaywalkers' poses. Different variables, such as the pedestrian pose, walking speed, location in the road environment, count and direction of approaching traffic, speed and type of closest approaching vehicle, and so forth, are used as input variables. The dataset for this study consists of 47,588 samples gathered by analyzing 1753 jaywalkers under non-lane-based heterogeneous traffic situations. Keypoint detection on the pedestrian body is made using MediaPipe. YOLOv4 and DeepSORT are used to detect and track road users to get trajectory data. Training and testing datasets are prepared for different prediction horizons to test the proposed models’ applicability for roads of varying design speeds. Four machine learning models based on ensemble techniques, namely random forest (RF), adaptive boosting (AdaBoost), gradient boosting, and extreme gradient boosting, are trained and tested for different prediction horizons from 0.5 to 4 s. Up to the prediction horizon of 1 s, all models performed equally well with Area under the ROC curve (AUC) values above 0.95. At higher prediction horizons, the RF is found to outperform the other models. All models, except AdaBoost, maintained an AUC value of greater than 0.9 when predicting future states up to a maximum of 2.5 s. The proposed model performs well for both short-term and long-term predictions by combining the effect of surrounding dynamics with pedestrian stance and speed. The outcomes can be utilized to assist infrastructure-to-vehicle connectivity in empowering vehicles to navigate through jaywalkers safely, enhancing pedestrian safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
LL发布了新的文献求助10
1秒前
wanci应助幼汁汁鬼鬼采纳,获得10
2秒前
3秒前
3秒前
5秒前
wildeager完成签到,获得积分10
6秒前
6秒前
NexusExplorer应助自然安雁采纳,获得10
6秒前
木子完成签到,获得积分10
6秒前
姚姚完成签到,获得积分20
7秒前
8秒前
AAAaa发布了新的文献求助10
8秒前
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
浮游应助niuniujia采纳,获得10
10秒前
dz发布了新的文献求助10
10秒前
浮游应助mmyhn采纳,获得10
11秒前
李爱国应助YQT采纳,获得30
11秒前
Yonina发布了新的文献求助10
12秒前
负责丹亦完成签到,获得积分10
12秒前
iebix发布了新的文献求助20
13秒前
猪头发布了新的文献求助10
14秒前
14秒前
科目三应助大聪明采纳,获得10
15秒前
16秒前
16秒前
yk完成签到,获得积分10
16秒前
17秒前
17秒前
没有你沉完成签到,获得积分20
18秒前
小欣完成签到,获得积分10
19秒前
水滴发布了新的文献求助10
19秒前
NexusExplorer应助零九二一采纳,获得10
20秒前
21秒前
zhangweiji发布了新的文献求助10
21秒前
爱吃冻梨完成签到,获得积分10
22秒前
浮游应助没有你沉采纳,获得10
22秒前
健忘曼彤发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Nonthermal Processing Technologies for Food 800
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4987839
求助须知:如何正确求助?哪些是违规求助? 4237472
关于积分的说明 13199138
捐赠科研通 4031234
什么是DOI,文献DOI怎么找? 2205379
邀请新用户注册赠送积分活动 1216944
关于科研通互助平台的介绍 1134978