Prediction of the Future State of Pedestrians While Jaywalking Under Non-Lane-Based Heterogeneous Traffic Conditions

阿达布思 Boosting(机器学习) 随机森林 行人 计算机科学 预测建模 人工智能 机器学习 梯度升压 集成学习 模拟 支持向量机 工程类 运输工程
作者
Kaliprasana Muduli,Indrajit Ghosh
出处
期刊:Transportation Research Record [SAGE]
卷期号:2677 (10): 554-571 被引量:7
标识
DOI:10.1177/03611981231161619
摘要

This study proposes a novel framework to predict jaywalkers' future state in non-lane-based heterogeneous traffic conditions by combining the effects of the surrounding dynamics with jaywalkers' poses. Different variables, such as the pedestrian pose, walking speed, location in the road environment, count and direction of approaching traffic, speed and type of closest approaching vehicle, and so forth, are used as input variables. The dataset for this study consists of 47,588 samples gathered by analyzing 1753 jaywalkers under non-lane-based heterogeneous traffic situations. Keypoint detection on the pedestrian body is made using MediaPipe. YOLOv4 and DeepSORT are used to detect and track road users to get trajectory data. Training and testing datasets are prepared for different prediction horizons to test the proposed models’ applicability for roads of varying design speeds. Four machine learning models based on ensemble techniques, namely random forest (RF), adaptive boosting (AdaBoost), gradient boosting, and extreme gradient boosting, are trained and tested for different prediction horizons from 0.5 to 4 s. Up to the prediction horizon of 1 s, all models performed equally well with Area under the ROC curve (AUC) values above 0.95. At higher prediction horizons, the RF is found to outperform the other models. All models, except AdaBoost, maintained an AUC value of greater than 0.9 when predicting future states up to a maximum of 2.5 s. The proposed model performs well for both short-term and long-term predictions by combining the effect of surrounding dynamics with pedestrian stance and speed. The outcomes can be utilized to assist infrastructure-to-vehicle connectivity in empowering vehicles to navigate through jaywalkers safely, enhancing pedestrian safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助高贵的芷采纳,获得10
刚刚
en发布了新的文献求助10
1秒前
1秒前
SYLH应助swordlee采纳,获得10
1秒前
1秒前
一指墨发布了新的文献求助10
2秒前
FashionBoy应助吼吼哈哈采纳,获得10
3秒前
Owen应助建设采纳,获得10
3秒前
曾经的绮晴关注了科研通微信公众号
3秒前
4秒前
4秒前
许多知识发布了新的文献求助10
4秒前
杰帅完成签到,获得积分10
7秒前
111完成签到,获得积分10
7秒前
皓轩发布了新的文献求助10
8秒前
8秒前
吃了吃了发布了新的文献求助10
9秒前
surge完成签到,获得积分10
9秒前
文静三颜发布了新的文献求助30
10秒前
10秒前
11秒前
科研通AI2S应助韩梅采纳,获得10
11秒前
董小姐完成签到,获得积分10
11秒前
12秒前
研友_VZG7GZ应助许多知识采纳,获得10
14秒前
王wangWANG发布了新的文献求助10
14秒前
彭甜发布了新的文献求助10
14秒前
南吕廿八完成签到,获得积分10
15秒前
QY11发布了新的文献求助10
15秒前
科研通AI5应助啊哈采纳,获得10
15秒前
科研通AI5应助文静三颜采纳,获得10
16秒前
en完成签到,获得积分10
16秒前
17秒前
baekhyun完成签到,获得积分10
17秒前
laoxiaozi发布了新的文献求助10
18秒前
18秒前
JIA完成签到,获得积分10
20秒前
20秒前
iNk应助无异常采纳,获得20
21秒前
7766完成签到 ,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3554736
求助须知:如何正确求助?哪些是违规求助? 3130574
关于积分的说明 9387593
捐赠科研通 2829927
什么是DOI,文献DOI怎么找? 1555757
邀请新用户注册赠送积分活动 726286
科研通“疑难数据库(出版商)”最低求助积分说明 715561