Prediction of the Future State of Pedestrians While Jaywalking Under Non-Lane-Based Heterogeneous Traffic Conditions

阿达布思 Boosting(机器学习) 随机森林 行人 计算机科学 预测建模 人工智能 机器学习 梯度升压 集成学习 模拟 支持向量机 工程类 运输工程
作者
Kaliprasana Muduli,Indrajit Ghosh
出处
期刊:Transportation Research Record [SAGE]
卷期号:2677 (10): 554-571 被引量:7
标识
DOI:10.1177/03611981231161619
摘要

This study proposes a novel framework to predict jaywalkers' future state in non-lane-based heterogeneous traffic conditions by combining the effects of the surrounding dynamics with jaywalkers' poses. Different variables, such as the pedestrian pose, walking speed, location in the road environment, count and direction of approaching traffic, speed and type of closest approaching vehicle, and so forth, are used as input variables. The dataset for this study consists of 47,588 samples gathered by analyzing 1753 jaywalkers under non-lane-based heterogeneous traffic situations. Keypoint detection on the pedestrian body is made using MediaPipe. YOLOv4 and DeepSORT are used to detect and track road users to get trajectory data. Training and testing datasets are prepared for different prediction horizons to test the proposed models’ applicability for roads of varying design speeds. Four machine learning models based on ensemble techniques, namely random forest (RF), adaptive boosting (AdaBoost), gradient boosting, and extreme gradient boosting, are trained and tested for different prediction horizons from 0.5 to 4 s. Up to the prediction horizon of 1 s, all models performed equally well with Area under the ROC curve (AUC) values above 0.95. At higher prediction horizons, the RF is found to outperform the other models. All models, except AdaBoost, maintained an AUC value of greater than 0.9 when predicting future states up to a maximum of 2.5 s. The proposed model performs well for both short-term and long-term predictions by combining the effect of surrounding dynamics with pedestrian stance and speed. The outcomes can be utilized to assist infrastructure-to-vehicle connectivity in empowering vehicles to navigate through jaywalkers safely, enhancing pedestrian safety.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助pingan采纳,获得10
4秒前
yuxi2025完成签到 ,获得积分10
4秒前
nuoran完成签到,获得积分10
5秒前
源来是洲董完成签到,获得积分10
5秒前
云野行风完成签到 ,获得积分10
9秒前
Zzz完成签到,获得积分10
11秒前
Tabby完成签到,获得积分10
11秒前
灵巧的青寒完成签到,获得积分10
12秒前
天想月完成签到,获得积分10
13秒前
想飞的熊完成签到 ,获得积分10
14秒前
李海艳完成签到 ,获得积分10
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
zzh完成签到 ,获得积分10
19秒前
晨许沫光完成签到 ,获得积分10
19秒前
量子星尘发布了新的文献求助30
19秒前
苏打完成签到,获得积分10
23秒前
26秒前
爱撒娇的大开完成签到 ,获得积分10
26秒前
润润轩轩完成签到 ,获得积分10
28秒前
pingan完成签到,获得积分10
28秒前
pingan发布了新的文献求助10
31秒前
czxy完成签到,获得积分10
32秒前
肥肥完成签到 ,获得积分10
32秒前
zhuxf完成签到 ,获得积分10
33秒前
35秒前
乐观健柏完成签到,获得积分10
35秒前
Hilda007完成签到,获得积分0
35秒前
陈龙平完成签到 ,获得积分10
35秒前
快乐疯样完成签到,获得积分10
35秒前
微笑襄完成签到 ,获得积分10
36秒前
研友_nPb9e8完成签到,获得积分10
38秒前
Tsuki完成签到,获得积分10
38秒前
40秒前
42秒前
43秒前
俭朴的世界完成签到 ,获得积分0
44秒前
蟑先生发布了新的文献求助10
45秒前
47秒前
vvvaee完成签到 ,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789530
求助须知:如何正确求助?哪些是违规求助? 5720862
关于积分的说明 15474819
捐赠科研通 4917334
什么是DOI,文献DOI怎么找? 2646933
邀请新用户注册赠送积分活动 1594542
关于科研通互助平台的介绍 1549081