Prediction of the Future State of Pedestrians While Jaywalking Under Non-Lane-Based Heterogeneous Traffic Conditions

阿达布思 Boosting(机器学习) 随机森林 行人 计算机科学 预测建模 人工智能 机器学习 梯度升压 集成学习 模拟 支持向量机 工程类 运输工程
作者
Kaliprasana Muduli,Indrajit Ghosh
出处
期刊:Transportation Research Record [SAGE]
卷期号:2677 (10): 554-571 被引量:7
标识
DOI:10.1177/03611981231161619
摘要

This study proposes a novel framework to predict jaywalkers' future state in non-lane-based heterogeneous traffic conditions by combining the effects of the surrounding dynamics with jaywalkers' poses. Different variables, such as the pedestrian pose, walking speed, location in the road environment, count and direction of approaching traffic, speed and type of closest approaching vehicle, and so forth, are used as input variables. The dataset for this study consists of 47,588 samples gathered by analyzing 1753 jaywalkers under non-lane-based heterogeneous traffic situations. Keypoint detection on the pedestrian body is made using MediaPipe. YOLOv4 and DeepSORT are used to detect and track road users to get trajectory data. Training and testing datasets are prepared for different prediction horizons to test the proposed models’ applicability for roads of varying design speeds. Four machine learning models based on ensemble techniques, namely random forest (RF), adaptive boosting (AdaBoost), gradient boosting, and extreme gradient boosting, are trained and tested for different prediction horizons from 0.5 to 4 s. Up to the prediction horizon of 1 s, all models performed equally well with Area under the ROC curve (AUC) values above 0.95. At higher prediction horizons, the RF is found to outperform the other models. All models, except AdaBoost, maintained an AUC value of greater than 0.9 when predicting future states up to a maximum of 2.5 s. The proposed model performs well for both short-term and long-term predictions by combining the effect of surrounding dynamics with pedestrian stance and speed. The outcomes can be utilized to assist infrastructure-to-vehicle connectivity in empowering vehicles to navigate through jaywalkers safely, enhancing pedestrian safety.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
周末万岁完成签到,获得积分10
1秒前
无语的煎蛋完成签到 ,获得积分10
1秒前
4秒前
甜美的觅荷完成签到,获得积分10
4秒前
5秒前
开心完成签到 ,获得积分10
5秒前
lkkkkk完成签到,获得积分10
6秒前
7秒前
Alanni完成签到 ,获得积分10
7秒前
8秒前
阔达皮卡丘完成签到 ,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
jim完成签到 ,获得积分10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
bubble完成签到 ,获得积分10
12秒前
13秒前
13秒前
彼岸完成签到,获得积分10
13秒前
15秒前
zzz完成签到,获得积分10
16秒前
桃月二九完成签到,获得积分10
16秒前
yffff发布了新的文献求助10
17秒前
peathy发布了新的文献求助10
17秒前
我要发文章完成签到,获得积分20
17秒前
luchen发布了新的文献求助10
17秒前
Wang完成签到,获得积分10
17秒前
zoe完成签到 ,获得积分10
18秒前
沚沐发布了新的文献求助10
18秒前
已歌完成签到 ,获得积分10
18秒前
华仔应助久木采纳,获得10
20秒前
20秒前
yffff完成签到,获得积分10
22秒前
22秒前
隐形曼青应助沚沐采纳,获得10
23秒前
SciEngineerX完成签到,获得积分10
23秒前
QWE完成签到,获得积分10
24秒前
TongVS完成签到,获得积分20
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5741989
求助须知:如何正确求助?哪些是违规求助? 5404909
关于积分的说明 15343645
捐赠科研通 4883431
什么是DOI,文献DOI怎么找? 2625021
邀请新用户注册赠送积分活动 1573893
关于科研通互助平台的介绍 1530838