Abstract The oxidation of atrazine herbicide from water was performed by using titanium dioxide (TiO 2 ) nanoparticles synthesized via the sol-gel method. A batch-scale photocatalytic reactor was designed for experimental work. The process was monitored using a UV–visible spectrophotometer. Operational parameters such as catalyst loading and pollutant concentration were investigated. The X-ray diffraction confirmed the anatase phase and high purity of the synthesized particles. Fourier transform infrared showed the functional group of titanium (Ti–O–Ti). The morphology of synthesized nanoparticles was characterized by scanning electron microscopy and transmission electron microscopy, which exhibited the irregular shape of nanoparticles along with aggregations. The average size of TiO 2 was found to be 56.92 nm as measured from dynamic light scattering analysis. UV–visible spectrometry showed an absorbance of 0.13 (<1). The nanoparticles displayed UV light-responsive catalytic ability with a bandgap energy of 3.14 eV. Furthermore, atrazine was discovered using mass spectrometry, which revealed a clear and sharp peak at 173, 95, and 76 m/z , respectively, at collision energies of 16 and 24 eV. The photocatalytic activity of the TiO 2 nanoparticles was examined for the degradation of atrazine. Overall, the obtained results displayed the great efficiency of TiO 2 nanoparticles towards ultra-violet light, which was 92.56% at 100 mg of dosages, highlighting the great potential of the photocatalysis process for atrazine degradation. Furthermore, the process followed pseudo-first-order kinetics and the rate was seen to depend on catalyst loading.