已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hybrid semantic segmentation for tunnel lining cracks based on Swin Transformer and convolutional neural network

计算机科学 卷积神经网络 分割 人工智能 变压器 模式识别(心理学) 计算机视觉 工程类 电压 电气工程
作者
Zhong Zhou,Junjie Zhang,Chenjie Gong
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
卷期号:38 (17): 2491-2510 被引量:89
标识
DOI:10.1111/mice.13003
摘要

Abstract In the field of tunnel lining crack identification, the semantic segmentation algorithms based on convolution neural network (CNN) are extensively used. Owing to the inherent locality of CNN, these algorithms cannot make full use of context semantic information, resulting in difficulty in capturing the global features of crack. Transformer‐based networks can capture global semantic information, but this method also has the deficiencies of strong data dependence and easy loss of local features. In this paper, a hybrid semantic segmentation algorithm for tunnel lining crack, named SCDeepLab, is proposed by fusing Swin Transformer and CNN in the encoding and decoding framework of DeepLabv3+ to address the above issues. In SCDeepLab, a joint backbone network is introduced with CNN‐based Inverse Residual Block and Swin Transformer Block. The former is used to extract the local detailed information of the crack to generate the shallow feature layer, whereas the latter is used to extract the global semantic information to obtain the deep feature layer. In addition, Efficient Channel Attention enhanced Feature Fusion Module is proposed to fuse the shallow and deep features to combine the advantages of the two types of features. Furthermore, the strategy of transfer learning is adopted to solve the data dependency of Swin Transformer. The results show that the mean intersection over union ( mIoU ) and mean pixel accuracy ( mPA ) of SCDeepLab on the data sets constructed in this paper are 77.41% and 84.42%, respectively, which have higher segmentation accuracy than previous CNN‐based and transformer‐based semantic segmentation algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重的安萱完成签到,获得积分10
1秒前
shen完成签到,获得积分10
1秒前
2秒前
辻诺完成签到 ,获得积分10
3秒前
雪sung完成签到,获得积分10
3秒前
无心发布了新的文献求助10
6秒前
陈咬金发布了新的文献求助10
8秒前
9秒前
10秒前
11秒前
笑而不语完成签到 ,获得积分10
12秒前
奋斗的猪发布了新的文献求助10
14秒前
ecoli发布了新的文献求助10
15秒前
嗯啊完成签到,获得积分10
16秒前
ecoli完成签到,获得积分10
23秒前
25秒前
zikuizheng发布了新的文献求助10
28秒前
奋斗的猪完成签到 ,获得积分10
29秒前
笨笨西牛完成签到 ,获得积分0
29秒前
丘比特应助陈咬金采纳,获得10
29秒前
Magali驳回了Akim应助
30秒前
32秒前
36秒前
36秒前
海贼学术完成签到 ,获得积分10
37秒前
慕青应助咿咿呀呀采纳,获得10
39秒前
Epic发布了新的文献求助10
39秒前
shen发布了新的文献求助10
39秒前
可乐桶发布了新的文献求助10
43秒前
44秒前
13656479046完成签到 ,获得积分10
46秒前
咿咿呀呀发布了新的文献求助10
49秒前
打打应助贺豪采纳,获得10
50秒前
量子星尘发布了新的文献求助10
53秒前
53秒前
jiangmin0702发布了新的文献求助10
56秒前
57秒前
亭2007完成签到 ,获得积分10
58秒前
1分钟前
1分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953303
求助须知:如何正确求助?哪些是违规求助? 3498714
关于积分的说明 11092881
捐赠科研通 3229236
什么是DOI,文献DOI怎么找? 1785246
邀请新用户注册赠送积分活动 869370
科研通“疑难数据库(出版商)”最低求助积分说明 801435