Make Bricks with a Little Straw: Large-Scale Spatio-Temporal Graph Learning with Restricted GPU-Memory Capacity

计算机科学 图形 图形处理单元的通用计算 比例(比率) 库达 并行计算 人工智能 计算机图形学(图像) 理论计算机科学 绘图 地图学 地理
作者
Binwu Wang,Pengkun Wang,Zhengyang Zhou,Zhe Zhao,Wei Xu,Li Wang
标识
DOI:10.24963/ijcai.2024/264
摘要

Traffic prediction plays a key role in various smart city applications, which can help traffic managers make traffic plans in advance, assist online ride-hailing companies in deploying vehicles reasonably, and provide early warning of congestion for safety authorities. While increasingly complex models achieve impressive prediction performance, there are concerns about the effectiveness of these models in handling large-scale road networks. Especially for researchers who don't have access to powerful GPU devices, the expensive memory burden limits the usefulness of these models. In this paper, we take the first step of learning on the large-scale spatio-temporal graph and propose a divide-and-conquer training strategy for Large Spatio-Temporal Graph Learning, namely LarSTL. The core idea behind this strategy is to divide the large graph into multiple subgraphs, which are treated as task streams to sequentially train the model to conquer each subgraph one by one. We introduce a novel perspective based on the continuous learning paradigm to achieve this goal. In order to overcome forgetting the knowledge learned from previous subgraphs, an experience-replay strategy consolidates the learned knowledge by replaying nodes sampled from previous subgraphs. Moreover, we configure specific feature adaptors for each subgraph to extract personalized features, and it is also beneficial to consolidate the learned knowledge from the perspective of parameters. We conduct experiments using multiple large-scale traffic network datasets on a V100 GPU with only 16GB memory, and the results demonstrate that our LarSTL can achieve competitive performance and high efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
long完成签到,获得积分0
刚刚
ly普鲁卡因完成签到,获得积分10
1秒前
Yy完成签到 ,获得积分10
1秒前
也是难得取个名完成签到 ,获得积分10
4秒前
温文尔雅完成签到,获得积分10
5秒前
Qvby3完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
13秒前
乐乐应助coven采纳,获得30
13秒前
温柔觅松完成签到 ,获得积分10
13秒前
冷静如松完成签到 ,获得积分10
14秒前
勤奋完成签到,获得积分0
25秒前
leng完成签到 ,获得积分10
25秒前
如果有风来完成签到,获得积分10
29秒前
高文强完成签到 ,获得积分10
29秒前
明天过后完成签到,获得积分10
31秒前
yinshan完成签到 ,获得积分10
31秒前
爱科研的小虞完成签到 ,获得积分10
32秒前
Hudson完成签到,获得积分10
33秒前
大大大大宝凌完成签到,获得积分10
41秒前
bohn123完成签到 ,获得积分10
42秒前
C_Li完成签到,获得积分10
44秒前
小白果果完成签到,获得积分10
46秒前
人文完成签到 ,获得积分10
46秒前
LXZ完成签到,获得积分10
46秒前
上官完成签到 ,获得积分10
48秒前
Cai完成签到,获得积分10
50秒前
zdy完成签到,获得积分10
51秒前
乔砖家应助CL837809486采纳,获得10
52秒前
53秒前
53秒前
陈_Ccc完成签到 ,获得积分10
53秒前
54秒前
南风知我意完成签到,获得积分10
55秒前
DXDXJX完成签到 ,获得积分10
58秒前
h41692011完成签到 ,获得积分10
59秒前
coven发布了新的文献求助30
59秒前
sciforce完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
大雪完成签到 ,获得积分10
1分钟前
浮尘完成签到 ,获得积分0
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015603
求助须知:如何正确求助?哪些是违规求助? 3555597
关于积分的说明 11318138
捐赠科研通 3288782
什么是DOI,文献DOI怎么找? 1812284
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812015