Make Bricks with a Little Straw: Large-Scale Spatio-Temporal Graph Learning with Restricted GPU-Memory Capacity

计算机科学 图形 图形处理单元的通用计算 比例(比率) 库达 并行计算 人工智能 计算机图形学(图像) 理论计算机科学 绘图 地图学 地理
作者
Binwu Wang,Pengkun Wang,Zhengyang Zhou,Zhe Zhao,Wei Xu,Li Wang
标识
DOI:10.24963/ijcai.2024/264
摘要

Traffic prediction plays a key role in various smart city applications, which can help traffic managers make traffic plans in advance, assist online ride-hailing companies in deploying vehicles reasonably, and provide early warning of congestion for safety authorities. While increasingly complex models achieve impressive prediction performance, there are concerns about the effectiveness of these models in handling large-scale road networks. Especially for researchers who don't have access to powerful GPU devices, the expensive memory burden limits the usefulness of these models. In this paper, we take the first step of learning on the large-scale spatio-temporal graph and propose a divide-and-conquer training strategy for Large Spatio-Temporal Graph Learning, namely LarSTL. The core idea behind this strategy is to divide the large graph into multiple subgraphs, which are treated as task streams to sequentially train the model to conquer each subgraph one by one. We introduce a novel perspective based on the continuous learning paradigm to achieve this goal. In order to overcome forgetting the knowledge learned from previous subgraphs, an experience-replay strategy consolidates the learned knowledge by replaying nodes sampled from previous subgraphs. Moreover, we configure specific feature adaptors for each subgraph to extract personalized features, and it is also beneficial to consolidate the learned knowledge from the perspective of parameters. We conduct experiments using multiple large-scale traffic network datasets on a V100 GPU with only 16GB memory, and the results demonstrate that our LarSTL can achieve competitive performance and high efficiency.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
尊敬紫寒完成签到 ,获得积分10
刚刚
1秒前
科研通AI2S应助绿狗玩偶采纳,获得10
1秒前
1秒前
仁爱的秋天完成签到,获得积分10
1秒前
姚11发布了新的文献求助10
1秒前
英吉利25发布了新的文献求助10
2秒前
coconut完成签到,获得积分10
2秒前
小竹子发布了新的文献求助10
2秒前
繁荣的觅儿完成签到,获得积分10
3秒前
wwx完成签到,获得积分10
4秒前
zcc完成签到,获得积分10
4秒前
nuoran完成签到,获得积分10
5秒前
5秒前
mol发布了新的文献求助10
6秒前
药007发布了新的文献求助10
6秒前
为来可期完成签到,获得积分10
7秒前
秋秋完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
沉默寄凡发布了新的文献求助10
12秒前
nuanxiner完成签到,获得积分10
13秒前
环游世界完成签到 ,获得积分10
13秒前
HCT完成签到,获得积分10
14秒前
zkygmu完成签到,获得积分10
14秒前
kk完成签到,获得积分10
14秒前
脑洞疼应助刚得力采纳,获得10
15秒前
Haley完成签到 ,获得积分10
15秒前
初夏的百褶裙完成签到,获得积分10
15秒前
15秒前
un完成签到,获得积分10
15秒前
DYZ完成签到,获得积分10
15秒前
mol完成签到,获得积分10
16秒前
17秒前
zombleq完成签到 ,获得积分10
17秒前
17秒前
陈栋炜完成签到,获得积分10
17秒前
初十完成签到,获得积分10
18秒前
张三完成签到,获得积分10
18秒前
星辰完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773811
求助须知:如何正确求助?哪些是违规求助? 5613858
关于积分的说明 15432836
捐赠科研通 4906205
什么是DOI,文献DOI怎么找? 2640110
邀请新用户注册赠送积分活动 1587960
关于科研通互助平台的介绍 1543002