Make Bricks with a Little Straw: Large-Scale Spatio-Temporal Graph Learning with Restricted GPU-Memory Capacity

计算机科学 图形 图形处理单元的通用计算 比例(比率) 库达 并行计算 人工智能 计算机图形学(图像) 理论计算机科学 绘图 地图学 地理
作者
Binwu Wang,Pengkun Wang,Zhengyang Zhou,Zhe Zhao,Wei Xu,Li Wang
标识
DOI:10.24963/ijcai.2024/264
摘要

Traffic prediction plays a key role in various smart city applications, which can help traffic managers make traffic plans in advance, assist online ride-hailing companies in deploying vehicles reasonably, and provide early warning of congestion for safety authorities. While increasingly complex models achieve impressive prediction performance, there are concerns about the effectiveness of these models in handling large-scale road networks. Especially for researchers who don't have access to powerful GPU devices, the expensive memory burden limits the usefulness of these models. In this paper, we take the first step of learning on the large-scale spatio-temporal graph and propose a divide-and-conquer training strategy for Large Spatio-Temporal Graph Learning, namely LarSTL. The core idea behind this strategy is to divide the large graph into multiple subgraphs, which are treated as task streams to sequentially train the model to conquer each subgraph one by one. We introduce a novel perspective based on the continuous learning paradigm to achieve this goal. In order to overcome forgetting the knowledge learned from previous subgraphs, an experience-replay strategy consolidates the learned knowledge by replaying nodes sampled from previous subgraphs. Moreover, we configure specific feature adaptors for each subgraph to extract personalized features, and it is also beneficial to consolidate the learned knowledge from the perspective of parameters. We conduct experiments using multiple large-scale traffic network datasets on a V100 GPU with only 16GB memory, and the results demonstrate that our LarSTL can achieve competitive performance and high efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
柯擎汉发布了新的文献求助10
刚刚
淡然的寻冬完成签到 ,获得积分10
1秒前
1111发布了新的文献求助10
1秒前
1秒前
欢呼宛白发布了新的文献求助10
3秒前
3秒前
Dreames发布了新的文献求助10
4秒前
4秒前
4秒前
666发布了新的文献求助10
5秒前
勤恳夜梅完成签到,获得积分20
5秒前
zzx发布了新的文献求助10
5秒前
顾矜应助佐原新之助采纳,获得10
6秒前
晶晶完成签到 ,获得积分10
7秒前
Singularity举报明理千雁求助涉嫌违规
7秒前
7秒前
黑囡完成签到,获得积分10
8秒前
传奇3应助HUAN采纳,获得10
8秒前
9秒前
打打应助111111采纳,获得10
9秒前
Sun完成签到,获得积分10
9秒前
1111完成签到,获得积分10
9秒前
ly_lin完成签到,获得积分10
10秒前
10秒前
123发布了新的文献求助10
10秒前
richadowei发布了新的文献求助10
10秒前
Dreames完成签到,获得积分10
11秒前
Kx完成签到,获得积分10
11秒前
慕青应助Halari采纳,获得10
11秒前
积极墨镜完成签到,获得积分10
12秒前
13秒前
斯文败类应助欧皇采纳,获得30
13秒前
14秒前
guositing发布了新的文献求助10
14秒前
14秒前
LLL发布了新的文献求助10
15秒前
小二郎应助crde采纳,获得10
15秒前
15秒前
Niuma完成签到,获得积分10
15秒前
16秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124803
求助须知:如何正确求助?哪些是违规求助? 2775148
关于积分的说明 7725553
捐赠科研通 2430633
什么是DOI,文献DOI怎么找? 1291291
科研通“疑难数据库(出版商)”最低求助积分说明 622121
版权声明 600328