Causal and Chronological Relationships Predict Memory Organization for Nonlinear Narratives

召回 心理学 认知心理学 事件(粒子物理) 叙述的 突出 因果结构 语义记忆 情景记忆 任务(项目管理) 认知 人工智能 语言学 计算机科学 哲学 物理 管理 量子力学 神经科学 经济
作者
James W. Antony,Angelo Lozano,Pahul Dhoat,Janice Chen,Kelly A. Bennion
出处
期刊:Journal of Cognitive Neuroscience [MIT Press]
卷期号:: 1-18
标识
DOI:10.1162/jocn_a_02216
摘要

Abstract While recounting an experience, one could employ multiple strategies to transition from one part to the next. For instance, if the event was learned out of linear order, one could recall events according to the time they were learned (temporal), similar events (semantic), events occurring nearby in time (chronological), or events produced by the current event (causal). To disentangle the importance of these factors, we had participants watch the nonlinear narrative, “Memento,” under different task instructions and presentation orders. For each scene of the film, we also separately computed semantic and causal networks. From these derivations, we contrasted the evidence for temporal, semantic, chronological, or causal strategies during recall. Critically, there was stronger evidence for the causal and chronological strategies than semantic or temporal strategies. Moreover, the causal and chronological strategies outperformed the temporal one even after asking participants to recall the film in the presented order, underscoring the fundamental nature of causal structure in scaffolding understanding and organizing recall. Nevertheless, time still marginally predicted recall transitions, suggesting it still operates as a weak signal in the presence of more salient forms of structure. In addition, semantic and causal network properties predicted scene memorability, including showing a stronger role for causes of an event than its outgoing effects. In summary, these effects highlight the importance of accounting for complex, causal networks in knowledge building and memory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
简晴发布了新的文献求助10
1秒前
1秒前
sdh发布了新的文献求助10
1秒前
1秒前
Forward发布了新的文献求助10
3秒前
3秒前
不配.给able的求助进行了留言
4秒前
阿菜完成签到,获得积分10
5秒前
7秒前
慕青应助汎影采纳,获得10
7秒前
8秒前
科研通AI2S应助小绵羊采纳,获得10
8秒前
www完成签到,获得积分10
8秒前
8秒前
leo完成签到 ,获得积分10
10秒前
zyfqpc应助美好斓采纳,获得10
13秒前
111发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
慕青应助sdh采纳,获得10
15秒前
思源应助汎影采纳,获得10
15秒前
15秒前
YQ发布了新的文献求助10
18秒前
隐形曼青应助贪玩的笑阳采纳,获得10
18秒前
sje发布了新的文献求助10
18秒前
英姑应助拾贰月采纳,获得10
18秒前
青青子衿发布了新的文献求助10
20秒前
21秒前
22秒前
24秒前
QI发布了新的文献求助10
25秒前
gzf发布了新的文献求助10
25秒前
科研通AI2S应助wuwuwu1wu采纳,获得10
25秒前
Akim应助春秋采纳,获得10
26秒前
科研通AI2S应助April采纳,获得10
26秒前
26秒前
蛋泥完成签到,获得积分10
28秒前
wujun发布了新的文献求助10
28秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138230
求助须知:如何正确求助?哪些是违规求助? 2789160
关于积分的说明 7790351
捐赠科研通 2445545
什么是DOI,文献DOI怎么找? 1300521
科研通“疑难数据库(出版商)”最低求助积分说明 625925
版权声明 601046