Constructing a diagnostic prediction model to estimate the severe respiratory syncytial virus pneumonia in children based on machine learning

肺炎 呼吸系统 医学 病毒 重症监护医学 病毒学 儿科 内科学
作者
Yuanwei Liu,Qiong Wu,Lifang Zhou,Yingyuan Tang,Fen Li,Shuangjie Li
出处
期刊:Shock [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1097/shk.0000000000002472
摘要

Abstract Background Severe respiratory syncytial virus (RSV) pneumonia is a leading cause of hospitalization and morbidity in infants and young children. Early identification of severe RSV pneumonia is crucial for timely and effective treatment by pediatricians. Currently, no prediction model exists for identifying severe RSV pneumonia in children. Methods This study aimed to construct a diagnostic prediction model for severe RSV pneumonia in children using a machine learning algorithm. We analyzed data from the Gene Expression Omnibus (GEO) Series, including training dataset GSE246622 and testing dataset GSE105450, to identify differential genes between severe and mild-to-moderate RSV pneumonia in children. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed on the differential genes, followed by the construction of a protein-protein interaction (PPI) network. An artificial neural network (ANN) algorithm was then used to develop and validate a diagnostic prediction model for severe RSV pneumonia in children. Results We identified 34 differentially expressed genes between the severe and mild-to-moderate RSV pneumonia groups. Enrichment analysis revealed that these genes were primarily related to pathogenic infection and immune response. From the PPI network, we identified 10 hub genes and, using the random forest algorithm, screened out 20 specific genes. The ANN-based diagnostic prediction model achieved an area under the curve (AUC) value of 0.970 in the training group and 0.833 in the testing group, demonstrating the model's accuracy. Conclusions This study identified specific biomarkers and developed a diagnostic model for severe RSV pneumonia in children. These findings provide a robust foundation for early identification and treatment of severe RSV pneumonia, offering new insights into its pathogenesis and improving pediatric care.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
无情洋葱给niiiiii的求助进行了留言
刚刚
刚刚
lili-发布了新的文献求助10
1秒前
2秒前
4秒前
4秒前
深情小丑鱼完成签到 ,获得积分10
4秒前
酸奶麦片儿完成签到,获得积分10
5秒前
6秒前
AireenBeryl531应助Only采纳,获得10
8秒前
淳于安筠发布了新的文献求助10
8秒前
胖大星发布了新的文献求助10
8秒前
九九发布了新的文献求助10
9秒前
Ar发布了新的文献求助10
12秒前
13秒前
13秒前
着急的尔安完成签到 ,获得积分10
14秒前
15秒前
pop发布了新的文献求助10
18秒前
lee完成签到,获得积分10
18秒前
淳于安筠发布了新的文献求助10
20秒前
20秒前
Jasper应助Ar采纳,获得10
22秒前
大模型应助zhou国兵采纳,获得10
23秒前
小泓完成签到,获得积分10
25秒前
26秒前
沼泽完成签到,获得积分10
27秒前
28秒前
脑洞疼应助科研通管家采纳,获得10
29秒前
嗯哼应助科研通管家采纳,获得50
29秒前
猪猪hero应助科研通管家采纳,获得10
29秒前
南风应助科研通管家采纳,获得10
29秒前
orixero应助科研通管家采纳,获得10
29秒前
情怀应助科研通管家采纳,获得10
29秒前
英姑应助科研通管家采纳,获得10
29秒前
丨叶修应助科研通管家采纳,获得20
29秒前
29秒前
852应助科研通管家采纳,获得10
29秒前
南风应助科研通管家采纳,获得10
29秒前
高分求助中
Востребованный временем 2500
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Injection and Compression Molding Fundamentals 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3421565
求助须知:如何正确求助?哪些是违规求助? 3022241
关于积分的说明 8899825
捐赠科研通 2709485
什么是DOI,文献DOI怎么找? 1485850
科研通“疑难数据库(出版商)”最低求助积分说明 686903
邀请新用户注册赠送积分活动 681999