Multidimensional effects of history, neighborhood, and proximity on urban land growth: A dynamic spatiotemporal rolling prediction model (STRM)

地理 地图学 经济地理学
作者
Yingjian Ren,Jianxin Yang,Yang Shen,Lizhou Wang,Zhong Zhang,Zibo Zhao
出处
期刊:Transactions in Gis [Wiley]
卷期号:28 (7): 1928-1956
标识
DOI:10.1111/tgis.13224
摘要

Abstract Accurate prediction of future urban land demand is essential for effective urban management and planning. However, existing studies often focus on predicting total demand within an administrative region, neglecting the spatiotemporal heterogeneities and interrelationships within its subregions, such as grids. This study introduces a dynamic spatiotemporal rolling prediction model (STRM) that integrates historical trends, neighborhood status, and spatial proximity for spatially explicit prediction of urban land demand at a grid level within an administrative region. STRM leverages historical urban land demand and proximity information from neighborhood grids to predict future demand of the foci grid. By integrating history and neighborhood information into a deep forest model, STRM provides an approach for rolling predictions of grid‐level urban land demand. Parameter sensitivity and structural sensitivity analyses of STRM reveal the impact of historical lags, neighborhood size, and spatial proximity on urban land demand predictions. Application of STRM in Wuhan demonstrated the performance of STRM over a 17‐year period (2000–2017), with an average adjusted R 2 of 0.89, outperforming other urban land demand prediction models. By predicting demand on a year‐by‐year basis, STRM effectively captures spatiotemporal heterogeneity and enhances the resolution of urban land demand prediction. STRM represents a shift from static macroscopic to dynamic microscopic prediction of urban land demand, offering valuable insights for future urban development and planning decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
佳佳完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
max发布了新的文献求助10
1秒前
fjnm完成签到,获得积分10
2秒前
Steve完成签到,获得积分10
2秒前
2秒前
欣喜的火龙果完成签到,获得积分10
2秒前
我可爱死学习了完成签到,获得积分20
2秒前
3秒前
5秒前
风格化橙发布了新的文献求助10
5秒前
awaibi发布了新的文献求助10
6秒前
48662发布了新的文献求助10
6秒前
爆米花应助奋斗金连采纳,获得10
7秒前
7秒前
welbeck完成签到,获得积分10
9秒前
悦己完成签到,获得积分10
9秒前
奕霖发布了新的文献求助10
9秒前
yuyuyu发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
11秒前
伊伊完成签到,获得积分10
12秒前
13秒前
14秒前
Hinsen发布了新的文献求助10
14秒前
可爱的日记本完成签到 ,获得积分10
16秒前
能干的小霸王关注了科研通微信公众号
16秒前
16秒前
等等有力气完成签到,获得积分10
19秒前
奋斗金连发布了新的文献求助10
20秒前
脑洞疼应助www111采纳,获得10
20秒前
dichloro发布了新的文献求助10
20秒前
21秒前
48662完成签到,获得积分10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707