亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multidimensional effects of history, neighborhood, and proximity on urban land growth: A dynamic spatiotemporal rolling prediction model (STRM)

地理 地图学 经济地理学
作者
Yingjian Ren,Jianxin Yang,Yang Shen,Lizhou Wang,Zhong Zhang,Zibo Zhao
出处
期刊:Transactions in Gis [Wiley]
卷期号:28 (7): 1928-1956
标识
DOI:10.1111/tgis.13224
摘要

Abstract Accurate prediction of future urban land demand is essential for effective urban management and planning. However, existing studies often focus on predicting total demand within an administrative region, neglecting the spatiotemporal heterogeneities and interrelationships within its subregions, such as grids. This study introduces a dynamic spatiotemporal rolling prediction model (STRM) that integrates historical trends, neighborhood status, and spatial proximity for spatially explicit prediction of urban land demand at a grid level within an administrative region. STRM leverages historical urban land demand and proximity information from neighborhood grids to predict future demand of the foci grid. By integrating history and neighborhood information into a deep forest model, STRM provides an approach for rolling predictions of grid‐level urban land demand. Parameter sensitivity and structural sensitivity analyses of STRM reveal the impact of historical lags, neighborhood size, and spatial proximity on urban land demand predictions. Application of STRM in Wuhan demonstrated the performance of STRM over a 17‐year period (2000–2017), with an average adjusted R 2 of 0.89, outperforming other urban land demand prediction models. By predicting demand on a year‐by‐year basis, STRM effectively captures spatiotemporal heterogeneity and enhances the resolution of urban land demand prediction. STRM represents a shift from static macroscopic to dynamic microscopic prediction of urban land demand, offering valuable insights for future urban development and planning decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
harrywoo完成签到,获得积分10
6秒前
15秒前
邢大志发布了新的文献求助10
21秒前
29秒前
ceeray23应助科研通管家采纳,获得10
38秒前
BowieHuang应助科研通管家采纳,获得10
38秒前
BowieHuang应助科研通管家采纳,获得10
38秒前
科研通AI6应助科研通管家采纳,获得10
38秒前
田様应助Cmqq采纳,获得10
43秒前
马宁婧完成签到 ,获得积分10
44秒前
Auralis完成签到 ,获得积分10
59秒前
1分钟前
苗条鸡翅完成签到 ,获得积分10
1分钟前
Cmqq发布了新的文献求助10
1分钟前
孔踏歌发布了新的文献求助20
1分钟前
alex发布了新的文献求助10
1分钟前
1分钟前
1分钟前
小呆瓜发布了新的文献求助10
1分钟前
文章发发发完成签到 ,获得积分10
1分钟前
orixero应助小呆瓜采纳,获得10
1分钟前
星辰大海应助clickable采纳,获得10
1分钟前
Ava应助Cmqq采纳,获得10
2分钟前
2分钟前
CC完成签到 ,获得积分10
2分钟前
省级中药饮片完成签到 ,获得积分10
2分钟前
tctc完成签到 ,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
2分钟前
瑞雪发布了新的文献求助10
3分钟前
瑞雪完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
Cmqq发布了新的文献求助10
3分钟前
充电宝应助zhouxunnjau采纳,获得10
3分钟前
果果发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685513
关于积分的说明 14838543
捐赠科研通 4670625
什么是DOI,文献DOI怎么找? 2538207
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904