Multidimensional effects of history, neighborhood, and proximity on urban land growth: A dynamic spatiotemporal rolling prediction model (STRM)

地理 地图学 经济地理学
作者
Yingjian Ren,Jianxin Yang,Yang Shen,Lizhou Wang,Zhong Zhang,Zibo Zhao
出处
期刊:Transactions in Gis [Wiley]
卷期号:28 (7): 1928-1956
标识
DOI:10.1111/tgis.13224
摘要

Abstract Accurate prediction of future urban land demand is essential for effective urban management and planning. However, existing studies often focus on predicting total demand within an administrative region, neglecting the spatiotemporal heterogeneities and interrelationships within its subregions, such as grids. This study introduces a dynamic spatiotemporal rolling prediction model (STRM) that integrates historical trends, neighborhood status, and spatial proximity for spatially explicit prediction of urban land demand at a grid level within an administrative region. STRM leverages historical urban land demand and proximity information from neighborhood grids to predict future demand of the foci grid. By integrating history and neighborhood information into a deep forest model, STRM provides an approach for rolling predictions of grid‐level urban land demand. Parameter sensitivity and structural sensitivity analyses of STRM reveal the impact of historical lags, neighborhood size, and spatial proximity on urban land demand predictions. Application of STRM in Wuhan demonstrated the performance of STRM over a 17‐year period (2000–2017), with an average adjusted R 2 of 0.89, outperforming other urban land demand prediction models. By predicting demand on a year‐by‐year basis, STRM effectively captures spatiotemporal heterogeneity and enhances the resolution of urban land demand prediction. STRM represents a shift from static macroscopic to dynamic microscopic prediction of urban land demand, offering valuable insights for future urban development and planning decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懵懂的尔风完成签到 ,获得积分10
1秒前
ding应助guard采纳,获得150
1秒前
2秒前
Joanne完成签到 ,获得积分10
3秒前
浮游应助瘦瘦的雨莲采纳,获得10
3秒前
4秒前
4秒前
蛙蛙完成签到 ,获得积分10
5秒前
luowenbo发布了新的文献求助10
7秒前
活力完成签到,获得积分10
8秒前
悦耳的谷芹完成签到 ,获得积分10
8秒前
9秒前
ilmiss完成签到,获得积分10
9秒前
llw发布了新的文献求助10
10秒前
YFL完成签到,获得积分10
10秒前
10秒前
kk_yang完成签到,获得积分10
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
12秒前
思源应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
13秒前
wwz应助科研通管家采纳,获得10
13秒前
13秒前
Hello应助科研通管家采纳,获得10
13秒前
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
传奇3应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
13秒前
我是老大应助科研通管家采纳,获得10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
向阳发布了新的文献求助10
13秒前
华仔应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得20
13秒前
zcl应助科研通管家采纳,获得150
13秒前
wwz应助科研通管家采纳,获得10
13秒前
chenqiumu应助科研通管家采纳,获得30
13秒前
Ankher应助科研通管家采纳,获得30
13秒前
Ankher应助科研通管家采纳,获得30
14秒前
14秒前
华仔应助科研通管家采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5305794
求助须知:如何正确求助?哪些是违规求助? 4451756
关于积分的说明 13853101
捐赠科研通 4339264
什么是DOI,文献DOI怎么找? 2382461
邀请新用户注册赠送积分活动 1377460
关于科研通互助平台的介绍 1345074