Multidimensional effects of history, neighborhood, and proximity on urban land growth: A dynamic spatiotemporal rolling prediction model (STRM)

地理 地图学 经济地理学
作者
Yingjian Ren,Jianxin Yang,Yang Shen,Lizhou Wang,Zhong Zhang,Zibo Zhao
出处
期刊:Transactions in Gis [Wiley]
卷期号:28 (7): 1928-1956
标识
DOI:10.1111/tgis.13224
摘要

Abstract Accurate prediction of future urban land demand is essential for effective urban management and planning. However, existing studies often focus on predicting total demand within an administrative region, neglecting the spatiotemporal heterogeneities and interrelationships within its subregions, such as grids. This study introduces a dynamic spatiotemporal rolling prediction model (STRM) that integrates historical trends, neighborhood status, and spatial proximity for spatially explicit prediction of urban land demand at a grid level within an administrative region. STRM leverages historical urban land demand and proximity information from neighborhood grids to predict future demand of the foci grid. By integrating history and neighborhood information into a deep forest model, STRM provides an approach for rolling predictions of grid‐level urban land demand. Parameter sensitivity and structural sensitivity analyses of STRM reveal the impact of historical lags, neighborhood size, and spatial proximity on urban land demand predictions. Application of STRM in Wuhan demonstrated the performance of STRM over a 17‐year period (2000–2017), with an average adjusted R 2 of 0.89, outperforming other urban land demand prediction models. By predicting demand on a year‐by‐year basis, STRM effectively captures spatiotemporal heterogeneity and enhances the resolution of urban land demand prediction. STRM represents a shift from static macroscopic to dynamic microscopic prediction of urban land demand, offering valuable insights for future urban development and planning decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tcf发布了新的文献求助10
1秒前
LIU发布了新的文献求助10
1秒前
不错完成签到,获得积分20
1秒前
ding应助hang采纳,获得10
1秒前
曹孟德啊发布了新的文献求助10
2秒前
充电宝应助许瑞琳采纳,获得10
2秒前
大模型应助喵典娜采纳,获得10
3秒前
didi发布了新的文献求助10
3秒前
Legend完成签到,获得积分10
3秒前
弱水完成签到,获得积分0
4秒前
Jasper应助sunyanghu369采纳,获得10
4秒前
金帛心兑完成签到,获得积分10
5秒前
5秒前
Lucas应助Maxpan采纳,获得10
6秒前
luck发布了新的文献求助10
6秒前
善学以致用应助乌梅不乌采纳,获得10
6秒前
6秒前
Selena完成签到,获得积分10
7秒前
ladder完成签到,获得积分10
7秒前
7秒前
月月完成签到,获得积分10
8秒前
8秒前
8秒前
学海无涯苦作舟完成签到,获得积分10
8秒前
Owen应助努力的欢欢采纳,获得10
8秒前
10秒前
斯文败类应助Mia采纳,获得10
10秒前
10秒前
Selena发布了新的文献求助20
10秒前
科研通AI6应助青草蛋糕采纳,获得100
10秒前
顾矜应助xueshu采纳,获得10
12秒前
12秒前
无极微光应助喜欢猫采纳,获得20
13秒前
璐璐发布了新的文献求助10
13秒前
13秒前
科研通AI6应助wlkk采纳,获得50
13秒前
文静的翠彤完成签到 ,获得积分10
13秒前
Ava应助dailj采纳,获得10
14秒前
GT关闭了GT文献求助
14秒前
Ava应助天马行空采纳,获得30
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618939
求助须知:如何正确求助?哪些是违规求助? 4703867
关于积分的说明 14924179
捐赠科研通 4758786
什么是DOI,文献DOI怎么找? 2550320
邀请新用户注册赠送积分活动 1513124
关于科研通互助平台的介绍 1474401