Escaping the drug-bias trap: using debiasing design to improve interpretability and generalization of drug-target interaction prediction

可解释性 计算机科学 药品 机器学习 人工智能 虚拟筛选 概化理论 计算生物学 药物发现 数据挖掘 生物信息学 生物 药理学 数学 统计
作者
Peidong Zhang,Jianzhu Ma,Ting Chen
标识
DOI:10.1101/2024.09.12.612771
摘要

Abstract Considering the high cost associated with determining reaction affinities through in-vitro experiments, virtual screening of potential drugs bound with specific protein pockets from vast compounds is critical in AI-assisted drug discovery. Deep-leaning approaches have been proposed for Drug-Target Interaction (DTI) prediction. However, they have shown overestimated accuracy because of the drug-bias trap, a challenge that results from excessive reliance on the drug branch in the traditional drug-protein dual-branch network approach. This casts doubt on the interpretability and generalizability of existing Drug-Target Interaction (DTI) models. Therefore, we introduce UdanDTI, an innovative deep-learning architecture designed specifically for predicting drug-protein interactions. UdanDTI applies an unbalanced dual-branch system and an attentive aggregation module to enhance interpretability from a biological perspective. Across various public datasets, UdanDTI demonstrates outstanding performance, outperforming state-of-the-art models under in-domain, cross-domain, and structural interpretability settings. Notably, it demonstrates exceptional accuracy in predicting drug responses of two crucial subgroups of Epidermal Growth Factor Receptor (EGFR) mutations associated with non-small cell lung cancer, consistent with experimental results. Meanwhile, UdanDTI could complement the advanced molecular docking software DiffDock. The codes and datasets of UdanDTI are available at https://github.com/CQ-zhang-2016/UdanDTI .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
smy发布了新的文献求助30
3秒前
清爽的含灵完成签到,获得积分10
3秒前
幸运的果子狸完成签到,获得积分10
3秒前
dsv完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
7秒前
道心完成签到,获得积分10
8秒前
彭于晏应助明亮的颖采纳,获得10
11秒前
12秒前
yamoon完成签到,获得积分10
12秒前
xy发布了新的文献求助10
13秒前
优美亦云发布了新的文献求助10
15秒前
李爱国应助诚c采纳,获得10
15秒前
16秒前
16秒前
爆米花应助折旧采纳,获得10
19秒前
桐桐应助poppy采纳,获得10
19秒前
隐形曼青应助密斯锌硒采纳,获得10
19秒前
小青椒应助科研通管家采纳,获得30
20秒前
大模型应助科研通管家采纳,获得10
20秒前
sevenhill应助科研通管家采纳,获得10
20秒前
Orange应助科研通管家采纳,获得10
20秒前
VDC应助科研通管家采纳,获得30
20秒前
情怀应助科研通管家采纳,获得10
20秒前
sevenhill应助科研通管家采纳,获得10
20秒前
yuu应助科研通管家采纳,获得10
20秒前
共享精神应助张立敏采纳,获得10
20秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
打打应助科研通管家采纳,获得10
21秒前
VDC应助科研通管家采纳,获得30
21秒前
田様应助科研通管家采纳,获得10
21秒前
CipherSage应助科研通管家采纳,获得10
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
Owen应助科研通管家采纳,获得10
21秒前
sevenhill应助科研通管家采纳,获得10
21秒前
美好斓应助科研通管家采纳,获得100
21秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5500984
求助须知:如何正确求助?哪些是违规求助? 4597393
关于积分的说明 14458827
捐赠科研通 4530714
什么是DOI,文献DOI怎么找? 2482919
邀请新用户注册赠送积分活动 1466601
关于科研通互助平台的介绍 1439291