Escaping the drug-bias trap: using debiasing design to improve interpretability and generalization of drug-target interaction prediction

可解释性 计算机科学 药品 机器学习 人工智能 虚拟筛选 概化理论 计算生物学 药物发现 数据挖掘 生物信息学 生物 药理学 数学 统计
作者
Peidong Zhang,Jianzhu Ma,Ting Chen
标识
DOI:10.1101/2024.09.12.612771
摘要

Abstract Considering the high cost associated with determining reaction affinities through in-vitro experiments, virtual screening of potential drugs bound with specific protein pockets from vast compounds is critical in AI-assisted drug discovery. Deep-leaning approaches have been proposed for Drug-Target Interaction (DTI) prediction. However, they have shown overestimated accuracy because of the drug-bias trap, a challenge that results from excessive reliance on the drug branch in the traditional drug-protein dual-branch network approach. This casts doubt on the interpretability and generalizability of existing Drug-Target Interaction (DTI) models. Therefore, we introduce UdanDTI, an innovative deep-learning architecture designed specifically for predicting drug-protein interactions. UdanDTI applies an unbalanced dual-branch system and an attentive aggregation module to enhance interpretability from a biological perspective. Across various public datasets, UdanDTI demonstrates outstanding performance, outperforming state-of-the-art models under in-domain, cross-domain, and structural interpretability settings. Notably, it demonstrates exceptional accuracy in predicting drug responses of two crucial subgroups of Epidermal Growth Factor Receptor (EGFR) mutations associated with non-small cell lung cancer, consistent with experimental results. Meanwhile, UdanDTI could complement the advanced molecular docking software DiffDock. The codes and datasets of UdanDTI are available at https://github.com/CQ-zhang-2016/UdanDTI .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助科研通管家采纳,获得10
刚刚
czcmh应助科研通管家采纳,获得10
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
avalanche应助科研通管家采纳,获得30
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
小马甲应助搞怪天真采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
充电宝应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
维奈克拉应助科研通管家采纳,获得10
1秒前
彭于彦祖应助科研通管家采纳,获得30
1秒前
JCY123应助科研通管家采纳,获得10
1秒前
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
李爱国应助落寞觅山采纳,获得10
1秒前
上官若男应助逆光采纳,获得10
1秒前
万能图书馆应助西粤学采纳,获得10
2秒前
Joker完成签到,获得积分20
2秒前
王某明完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
一去完成签到 ,获得积分10
3秒前
4秒前
尼龙niuniu发布了新的文献求助10
4秒前
科研通AI6应助蟹黄堡采纳,获得10
4秒前
在水一方应助zkc采纳,获得10
4秒前
malucia完成签到,获得积分10
4秒前
丘比特应助muni采纳,获得10
5秒前
5秒前
JamesPei应助陈仙仙采纳,获得30
5秒前
爆米花应助天天开心采纳,获得10
5秒前
大酋长发布了新的文献求助10
6秒前
绝版肉肉完成签到 ,获得积分10
6秒前
Enthusiastic发布了新的文献求助10
6秒前
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525920
求助须知:如何正确求助?哪些是违规求助? 4616027
关于积分的说明 14551672
捐赠科研通 4554261
什么是DOI,文献DOI怎么找? 2495729
邀请新用户注册赠送积分活动 1476208
关于科研通互助平台的介绍 1447848