Escaping the drug-bias trap: using debiasing design to improve interpretability and generalization of drug-target interaction prediction

可解释性 计算机科学 药品 机器学习 人工智能 虚拟筛选 概化理论 计算生物学 药物发现 数据挖掘 生物信息学 生物 药理学 数学 统计
作者
Peidong Zhang,Jianzhu Ma,Ting Chen
标识
DOI:10.1101/2024.09.12.612771
摘要

Abstract Considering the high cost associated with determining reaction affinities through in-vitro experiments, virtual screening of potential drugs bound with specific protein pockets from vast compounds is critical in AI-assisted drug discovery. Deep-leaning approaches have been proposed for Drug-Target Interaction (DTI) prediction. However, they have shown overestimated accuracy because of the drug-bias trap, a challenge that results from excessive reliance on the drug branch in the traditional drug-protein dual-branch network approach. This casts doubt on the interpretability and generalizability of existing Drug-Target Interaction (DTI) models. Therefore, we introduce UdanDTI, an innovative deep-learning architecture designed specifically for predicting drug-protein interactions. UdanDTI applies an unbalanced dual-branch system and an attentive aggregation module to enhance interpretability from a biological perspective. Across various public datasets, UdanDTI demonstrates outstanding performance, outperforming state-of-the-art models under in-domain, cross-domain, and structural interpretability settings. Notably, it demonstrates exceptional accuracy in predicting drug responses of two crucial subgroups of Epidermal Growth Factor Receptor (EGFR) mutations associated with non-small cell lung cancer, consistent with experimental results. Meanwhile, UdanDTI could complement the advanced molecular docking software DiffDock. The codes and datasets of UdanDTI are available at https://github.com/CQ-zhang-2016/UdanDTI .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
晴天完成签到,获得积分10
刚刚
坦率无剑完成签到,获得积分10
刚刚
1秒前
2秒前
HuangYu关注了科研通微信公众号
3秒前
firefly完成签到 ,获得积分10
3秒前
gjx完成签到 ,获得积分10
3秒前
yangshuai发布了新的文献求助10
5秒前
晴天发布了新的文献求助10
6秒前
carbonhan完成签到,获得积分10
8秒前
无极微光应助eden采纳,获得20
10秒前
KKK完成签到,获得积分20
10秒前
ming完成签到,获得积分10
11秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
Lny应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
pluto应助科研通管家采纳,获得10
13秒前
Lny应助科研通管家采纳,获得10
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
13秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
pluto应助科研通管家采纳,获得10
13秒前
Criminology34应助科研通管家采纳,获得10
13秒前
Criminology34应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
Lny应助科研通管家采纳,获得10
13秒前
pluto应助科研通管家采纳,获得10
13秒前
13秒前
HOAN应助科研通管家采纳,获得30
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978