Escaping the drug-bias trap: using debiasing design to improve interpretability and generalization of drug-target interaction prediction

可解释性 计算机科学 药品 机器学习 人工智能 虚拟筛选 概化理论 计算生物学 药物发现 数据挖掘 生物信息学 生物 药理学 数学 统计
作者
Peidong Zhang,Jianzhu Ma,Ting Chen
标识
DOI:10.1101/2024.09.12.612771
摘要

Abstract Considering the high cost associated with determining reaction affinities through in-vitro experiments, virtual screening of potential drugs bound with specific protein pockets from vast compounds is critical in AI-assisted drug discovery. Deep-leaning approaches have been proposed for Drug-Target Interaction (DTI) prediction. However, they have shown overestimated accuracy because of the drug-bias trap, a challenge that results from excessive reliance on the drug branch in the traditional drug-protein dual-branch network approach. This casts doubt on the interpretability and generalizability of existing Drug-Target Interaction (DTI) models. Therefore, we introduce UdanDTI, an innovative deep-learning architecture designed specifically for predicting drug-protein interactions. UdanDTI applies an unbalanced dual-branch system and an attentive aggregation module to enhance interpretability from a biological perspective. Across various public datasets, UdanDTI demonstrates outstanding performance, outperforming state-of-the-art models under in-domain, cross-domain, and structural interpretability settings. Notably, it demonstrates exceptional accuracy in predicting drug responses of two crucial subgroups of Epidermal Growth Factor Receptor (EGFR) mutations associated with non-small cell lung cancer, consistent with experimental results. Meanwhile, UdanDTI could complement the advanced molecular docking software DiffDock. The codes and datasets of UdanDTI are available at https://github.com/CQ-zhang-2016/UdanDTI .

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落后乞完成签到,获得积分20
刚刚
林海之光完成签到,获得积分10
刚刚
林狗发布了新的文献求助10
刚刚
Rich_WH完成签到,获得积分10
1秒前
1秒前
1秒前
彭佳乐发布了新的文献求助10
2秒前
香蕉觅云应助你好采纳,获得10
2秒前
HOME发布了新的文献求助10
4秒前
坦率的香烟完成签到,获得积分10
4秒前
华仔应助瑞士奶糖采纳,获得10
4秒前
5秒前
6秒前
刘小小123完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
万能图书馆应助vicky采纳,获得10
7秒前
爱学习的华夫饼完成签到,获得积分10
7秒前
科研通AI6应助Katze采纳,获得10
8秒前
8秒前
啊啊啊发布了新的文献求助10
8秒前
8秒前
8秒前
ding应助HOME采纳,获得10
9秒前
Nabi发布了新的文献求助10
9秒前
9秒前
SciGPT应助hh采纳,获得10
10秒前
10秒前
10秒前
12秒前
林海之光发布了新的文献求助10
13秒前
拼搏的龙完成签到,获得积分10
13秒前
落后乞关注了科研通微信公众号
13秒前
二七发布了新的文献求助10
13秒前
一百发布了新的文献求助10
13秒前
成小调发布了新的文献求助10
15秒前
浮游应助玥越采纳,获得10
17秒前
why完成签到,获得积分10
17秒前
酷波er应助Nabi采纳,获得10
17秒前
子车茗应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553580
求助须知:如何正确求助?哪些是违规求助? 4638120
关于积分的说明 14652281
捐赠科研通 4579970
什么是DOI,文献DOI怎么找? 2512009
邀请新用户注册赠送积分活动 1486966
关于科研通互助平台的介绍 1457791