Integrating Machine Learning and Large Language Models to Advance Exploration of Electrochemical Reactions

计算机科学 电化学 纳米技术 化学 材料科学 电极 物理化学
作者
Zhiling Zheng,Federico Florit,Brooke Jin,Haoyang Wu,Shih‐Cheng Li,Kakasaheb Y. Nandiwale,Chase A. Salazar,Jason Mustakis,William H. Green,Klavs F. Jensen
出处
期刊:Angewandte Chemie [Wiley]
标识
DOI:10.1002/ange.202418074
摘要

Electrochemical C‐H oxidation reactions offer a sustainable route to functionalize hydrocarbons, yet identifying suitable substrates and optimizing synthesis remain challenging. We report an integrated approach combining machine learning (ML) and large language models (LLMs) to streamline the exploration of electrochemical C‐H oxidation reactions. Utilizing a batch rapid screening electrochemical platform, we evaluated a wide range of reactions, initially classifying substrates by their reactivity, while LLMs text‐mined literature data to augment the training set. The resulting ML models for reactivity prediction achieved high accuracy (>90%) and enabled virtual screening of a large set of commercially available molecules. To optimize reaction conditions for selected substrates, LLMs were prompted to generate code that iteratively improved yields. This human‐AI collaboration proved effective, efficiently identifying high‐yield conditions for 8 drug‐like substances or intermediates. Notably, we benchmarked the accuracy and reliability of 10 different LLMs ‐ including LLaMA, Claude, and GPT‐4 ‐ on generating and executing codes related to ML based on natural language prompts given by chemists to showcase their tool‐making (code generation) and tool‐use (function calling) capabilities and potentials for accelerating research across four diverse tasks. We also collected an experimental benchmark dataset comprising 1071 reaction conditions and yields for electrochemical C‐H oxidation reactions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助song采纳,获得10
1秒前
英姑应助安戈采纳,获得10
1秒前
2秒前
momo完成签到,获得积分10
2秒前
研友_LOoomL发布了新的文献求助10
4秒前
木光发布了新的文献求助10
5秒前
小椰完成签到,获得积分10
5秒前
5秒前
7秒前
顶顶小明完成签到,获得积分10
8秒前
慕青应助李海妍采纳,获得10
8秒前
zhaomr完成签到,获得积分10
9秒前
疯狂的蜗牛完成签到,获得积分10
10秒前
10秒前
10秒前
bear应助liangxiao采纳,获得10
11秒前
壮壮妞发布了新的文献求助10
12秒前
我要吃挂面完成签到,获得积分10
12秒前
12秒前
想人陪的以云完成签到,获得积分10
13秒前
13秒前
感动的世平完成签到,获得积分10
15秒前
安戈发布了新的文献求助10
15秒前
16秒前
16秒前
17秒前
今后应助wei采纳,获得10
17秒前
小舒发布了新的文献求助10
18秒前
欧阳发布了新的文献求助10
19秒前
19秒前
20秒前
子车茗应助ZZ采纳,获得10
20秒前
toto发布了新的文献求助10
20秒前
咕噜咕噜lydd关注了科研通微信公众号
20秒前
21秒前
酷酷采萱发布了新的文献求助30
22秒前
丘比特应助流年忆梦采纳,获得10
22秒前
lmy完成签到 ,获得积分10
24秒前
24秒前
尊嘟假嘟发布了新的文献求助10
25秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3228597
求助须知:如何正确求助?哪些是违规求助? 2876412
关于积分的说明 8194867
捐赠科研通 2543528
什么是DOI,文献DOI怎么找? 1373784
科研通“疑难数据库(出版商)”最低求助积分说明 646833
邀请新用户注册赠送积分活动 621413