The Metacognitive Optimization of Offloading Task (MOOT): Both higher costs to offload and the accuracy of memory predict goodness of offloading performance.

心理学 任务(项目管理) 元认知 拟合优度 认知 认知心理学 人工智能 社会心理学 计算机科学 机器学习 神经科学 管理 经济
作者
Dillon H. Murphy,Janet Metcalfe
出处
期刊:Journal of Experimental Psychology: General
标识
DOI:10.1037/xge0001726
摘要

We developed a Metacognitive Offloading Optimization Task (MOOT) whereby participants were instructed to score as many points as possible by accessing words from a presented list either by remembering them (worth 10 points each) or by offloading them (worth less than 10 points each). Results indicated that participants were sensitive to the value of the offloaded items such that when offloaded items carried a high value (e.g., 8 points each), participants' scores were lower than if they had chosen to offload all items. Conversely, when offloaded items had a low value (e.g., 2 points each), participants' scores exceeded what they would have achieved had they offloaded all items. In Experiments 2 and 3, we investigated offloading optimality. Specifically, because each individual's maximum possible score depended on how much they could remember, each participant's memory ability was assessed in a pretest. The maximum score obtainable resulted from a strategy in which the participant opts to recall every item that they will be able to remember (obtaining 10 points for each) and offloads all other items (obtaining a value greater than 0 points for each), leaving no items unrecalled and not offloaded. To implement this strategy, the participant needs to have and use metaknowledge of exactly which items they will be able to recall. In each experiment, the MOOT scores-the ratio of participants' observed score to their maximum possible score-were closer to optimal for participants with better memory ability. (PsycInfo Database Record (c) 2025 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yongjie完成签到,获得积分10
刚刚
SYLH应助。.。采纳,获得10
1秒前
1秒前
1秒前
2秒前
sss发布了新的文献求助10
3秒前
3秒前
AgJune完成签到,获得积分10
3秒前
共享精神应助兴奋的思枫采纳,获得10
4秒前
4秒前
深情安青应助小仙鱼采纳,获得10
5秒前
5秒前
prosperp应助x-17采纳,获得20
6秒前
6秒前
6秒前
沉静的颦发布了新的文献求助10
6秒前
ss完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
yichun发布了新的文献求助10
8秒前
捏捏捏完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
123发布了新的文献求助10
11秒前
咚咚拐001发布了新的文献求助10
12秒前
白白1207完成签到,获得积分10
12秒前
123完成签到,获得积分10
13秒前
QAQ发布了新的文献求助10
13秒前
毛蛋爱吃汉堡包完成签到,获得积分10
13秒前
领导范儿应助陶梦欣采纳,获得10
14秒前
ZRDJ发布了新的文献求助10
14秒前
搁浅发布了新的文献求助30
16秒前
斯文败类应助Jtiger采纳,获得10
16秒前
林林完成签到,获得积分10
17秒前
17秒前
士兵许三多完成签到,获得积分10
17秒前
沉静的颦完成签到,获得积分10
17秒前
ding应助哭泣的皮皮虾采纳,获得10
18秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470584
求助须知:如何正确求助?哪些是违规求助? 3063615
关于积分的说明 9084626
捐赠科研通 2754092
什么是DOI,文献DOI怎么找? 1511215
邀请新用户注册赠送积分活动 698347
科研通“疑难数据库(出版商)”最低求助积分说明 698221