类有机物
生物
多路复用
计算生物学
细胞生物学
神经科学
计算机科学
电信
作者
Nicolò Caporale,Davide Castaldi,Marco Tullio Rigoli,Cristina Cheroni,Alessia Valenti,S. Stucchi,Manuel Lessi,Davide Bulgheresi,Sebastiano Trattaro,Martina Pezzali,Alessandro Vitriolo,Alejandro Tobon,Matteo Bonfanti,Dario Ricca,Katharina Schmid,Matthias Heinig,Fabian J. Theis,Carlo Emanuele Villa,Giuseppe Testa
标识
DOI:10.1038/s41592-024-02555-5
摘要
Dissecting human neurobiology at high resolution and with mechanistic precision requires a major leap in scalability, given the need for experimental designs that include multiple individuals and, prospectively, population cohorts. To lay the foundation for this, we have developed and benchmarked complementary strategies to multiplex brain organoids by pooling cells from different pluripotent stem cell (PSC) lines either during organoid generation (mosaic models) or before single-cell RNA sequencing (scRNA-seq) library preparation (downstream multiplexing). We have also developed a new computational method, SCanSNP, and a consensus call to deconvolve cell identities, overcoming current criticalities in doublets and low-quality cell identification. We validated both multiplexing methods for charting neurodevelopmental trajectories at high resolution, thus linking specific individuals' trajectories to genetic variation. Finally, we modeled their scalability across different multiplexing combinations and showed that mosaic organoids represent an enabling method for high-throughput settings. Together, this multiplexing suite of experimental and computational methods provides a highly scalable resource for brain disease and neurodiversity modeling.
科研通智能强力驱动
Strongly Powered by AbleSci AI