🔥【活动通知】:科研通第二届『应助活动周』重磅启航,3月24-30日求助秒级响应🚀,千元现金等你拿。这个春天,让互助之光璀璨绽放!查看详情

A predictive model based on the gut microbiota improves the diagnostic effect in patients with rheumatoid arthritis

肠道菌群 微生物群 失调 类风湿性关节炎 生物 队列 16S核糖体RNA 医学 计算生物学 免疫学 内科学 生物信息学 遗传学 基因
作者
Qi Wang,Chen‐Long Li,Siyuan Yu,Hui-Jing Dong,Lei Yang,Yang Liu,P. F. He,Sheng‐Xiao Zhang,Qi Yu
出处
期刊:Rheumatology [Oxford University Press]
标识
DOI:10.1093/rheumatology/keae706
摘要

Abstract Objectives Rheumatoid arthritis (RA) is a chronic, destructive autoimmune disorder predominantly targeting the joints, with gut microbiota dysbiosis being intricately associated with its progression. The aim of the present study was to develop of effective early diagnostic methods for early RA based on gut microbiota. Methods A cohort comprising 262 RA patients and 475 healthy controls (HCs) was recruited. Faecal samples were collected from all participants, and microbial DNA was subsequently extracted. The V3-V4 region of the 16S rRNA gene was amplified via polymerase chain reaction (PCR) and subjected to high-throughput sequencing using the Illumina MiSeq platform. Additionally, a dataset with the accession number PRJNA450340 from the European Nucleotide Archive (ENA) was incorporated into the study. The sequencing data underwent processing and analysis utilizing QIIME2. To construct microbiome-based diagnostic models, Random Forest (RF), Support Vector Machine (SVM), and Generalized Linear Model (GLM) methodologies were employed, with the self-test data functioning as the training set and the PRJNA450340 dataset serving as the validation set. Result The results indicated that patients with RA exhibited a significantly reduced gut microbial α-diversity compared with the HCs group. The β-diversity analysis demonstrated notable distinctions in the gut microbiota structure between RA patients and HCs. Variations in the gut microbiome composition between RA patients and HCs were evident at both the phylum and genus levels. LEfSe analysis revealed a substantial number of significantly different microbiota between RA patients and HC, and 7 key genera were obtained by intersection of the different flora in the two data sets: Ruminococcus_gnavus_group, Fusicatenibacter, Butyricicoccus, Subdoligranulum, Erysipelotrichaceae_UCG-003, Romboutsia, and Dorea. Utilizing these seven core genera, RA diagnostic models were developed employing RF, SVM, and GLM methodologies. The GLM model exhibited consistent performance, achieving an area under the curve (AUC) of 71.03% in the training set and 74.71% in the validation set. Conclusion Notable differences in gut microbiota exist between RA patients and healthy individuals. Diagnostic models based on key microbial genera hold potential for aiding in the early identification of individuals at risk for developing RA, thereby suggesting new avenues for its diagnosis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰坠于海完成签到,获得积分0
刚刚
wittig完成签到,获得积分10
刚刚
2秒前
hhhh完成签到 ,获得积分10
4秒前
汉堡包应助长宁舟采纳,获得10
4秒前
FY完成签到,获得积分10
5秒前
6秒前
7秒前
8秒前
9秒前
jinx123456完成签到,获得积分10
10秒前
寂寞酷鑫完成签到,获得积分10
11秒前
xhz发布了新的文献求助10
12秒前
ddrose发布了新的文献求助10
14秒前
15秒前
15秒前
打打应助Rui采纳,获得10
17秒前
活力的泥猴桃完成签到 ,获得积分10
18秒前
LLQ发布了新的文献求助10
19秒前
21秒前
小赵很努力完成签到,获得积分10
23秒前
桐桐应助zhangsiqi采纳,获得10
24秒前
24秒前
加减乘除完成签到 ,获得积分10
24秒前
26秒前
26秒前
赎罪完成签到 ,获得积分10
26秒前
26秒前
yzm完成签到,获得积分10
27秒前
LLQ完成签到,获得积分20
28秒前
snsut完成签到 ,获得积分10
28秒前
Rui发布了新的文献求助10
29秒前
nsi完成签到,获得积分10
30秒前
小蘑菇应助小赵很努力采纳,获得20
30秒前
sylvan发布了新的文献求助10
30秒前
高洁完成签到,获得积分10
31秒前
31秒前
YEM完成签到,获得积分10
31秒前
33秒前
水若冰寒发布了新的文献求助10
33秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1150
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 800
Teaching language in context (3rd edition) by Derewianka, Beverly; Jones, Pauline 610
EEG in clinical practice 2nd edition 1994 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3601671
求助须知:如何正确求助?哪些是违规求助? 3170312
关于积分的说明 9564772
捐赠科研通 2876482
什么是DOI,文献DOI怎么找? 1579438
邀请新用户注册赠送积分活动 742609
科研通“疑难数据库(出版商)”最低求助积分说明 725380