An empirical study of factors influencing usage intention for generative artificial intelligence products: A case study of China

中国 实证研究 生成语法 人工智能 计算机科学 心理学 统计 政治学 数学 法学
作者
Zhenxiang Cao,Liqing Peng
出处
期刊:Journal of Information Science [SAGE]
标识
DOI:10.1177/01655515241297329
摘要

The rapid advancement of generative artificial intelligence technologies has sparked widespread interest, yet understanding of user adoption patterns for these tools remains limited. While the unified theory of acceptance and use of technology model has been widely applied to various technologies, its applicability to generative artificial intelligence products, which present unique challenges and opportunities, has not been thoroughly explored. This gap in knowledge hinders the development of effective strategies for promoting user acceptance and optimising the design of generative artificial intelligence tools. This study extends the unified theory of acceptance and use of technology model to investigate the factors influencing usage intention for generative artificial intelligence products. The study incorporates additional variables such as digital literacy, perceived risk and perceived trust to provide a more comprehensive framework. Using structural equation modelling to analyse survey data, the study found that effort expectancy, performance expectancy, social influence, and perceived trust significantly and positively impact usage intention. In addition, digital literacy indirectly enhances usage intention through effort expectancy, while perceived risk negatively influences usage intention through reduced trust. Notably, facilitating conditions did not exhibit a significant effect on usage intention. These findings offer valuable insights for developers and researchers in the field of generative artificial intelligence, highlighting the importance of user-friendly design, performance optimisation, and trust-building measures. By identifying key factors that drive user adoption, this study contributes to a more nuanced understanding of technology acceptance in the context of advanced artificial intelligence systems, paving the way for more effective development and implementation strategies in this rapidly evolving field.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助泡泡采纳,获得10
1秒前
萨芬撒完成签到,获得积分10
2秒前
huaxuchina完成签到,获得积分10
2秒前
1111发布了新的文献求助10
2秒前
CDQ完成签到,获得积分10
2秒前
北笙完成签到 ,获得积分10
3秒前
Waaly完成签到,获得积分10
3秒前
薛之谦完成签到 ,获得积分10
4秒前
Fanzhijuan完成签到,获得积分10
5秒前
5秒前
entang完成签到,获得积分10
7秒前
xiaojie2024完成签到,获得积分10
7秒前
8秒前
鳗鱼落雁发布了新的文献求助10
8秒前
xian完成签到,获得积分10
8秒前
ld2024完成签到,获得积分10
9秒前
RSC完成签到,获得积分10
9秒前
lzz完成签到,获得积分10
10秒前
Yara.H完成签到 ,获得积分10
10秒前
大个应助Yippee采纳,获得10
11秒前
11秒前
CCC完成签到 ,获得积分10
12秒前
细腻的歌曲完成签到,获得积分10
13秒前
13秒前
xiaohaitao完成签到,获得积分10
13秒前
夜盏丿完成签到,获得积分10
13秒前
繁荣的忆文完成签到,获得积分10
13秒前
xfy完成签到,获得积分10
14秒前
小木木壮应助zhenliu采纳,获得10
14秒前
小林子完成签到,获得积分10
15秒前
sxd发布了新的文献求助10
15秒前
梦梦完成签到 ,获得积分10
15秒前
科研通AI2S应助Andy采纳,获得10
15秒前
澈千子完成签到,获得积分10
15秒前
周新运完成签到,获得积分10
16秒前
慎独完成签到 ,获得积分10
16秒前
暖暖完成签到,获得积分10
17秒前
18秒前
168521kf关注了科研通微信公众号
18秒前
KKLD发布了新的文献求助10
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303401
求助须知:如何正确求助?哪些是违规求助? 2937715
关于积分的说明 8483103
捐赠科研通 2611607
什么是DOI,文献DOI怎么找? 1426103
科研通“疑难数据库(出版商)”最低求助积分说明 662539
邀请新用户注册赠送积分活动 647030